在数据挖掘过程中,数据的认识是非常重要的一步,它为后续的数据分析、建模、特征选择等工作奠定基础。以鸢尾花数据集(Iris Dataset)数据集之鸢尾花数据集(Iris Dataset)-CSDN博客为例,下面将介绍如何从数据下载到可视化展示进行深入认识。
1. 数据下载
鸢尾花数据集是一个经典的机器学习数据集,通常用于分类任务。这个数据集可以从多个来源获得,包括通过sklearn
库直接加载。
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
# 查看数据集的基本信息
print(iris.keys())
数据集包含以下几个重要部分:
data
: 特征数据,包含150个样本,每个样本有4个特征(如花萼长度、花萼宽度、花瓣长度、花瓣宽度)。target
: 目标标签,包含样本所属的类别(共三类:Setosa, Versicolor, Virginica)。feature_names
: 特征的名称(例如 'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)')