【机器学习】迁移学习(Transfer Learning)

迁移学习(Transfer Learning)作为一种机器学习方法,主要通过将源域中学到的知识迁移到目标域,解决目标域中数据不足或标注困难的问题,尤其在无监督学习如聚类任务中具有显著优势。迁移学习的关键思想包括领域适应、知识共享和避免负迁移。它通过不同方式将源域的学习成果迁移至目标域,从而提高目标域学习效果。

迁移学习在聚类任务中的应用

聚类任务通常面临数据量少、领域漂移和跨模态数据的挑战,迁移学习在解决这些问题上表现出色:

  • 目标域数据量少:源域数据帮助目标域补充特征学习。
  • 领域漂移:源域和目标域数据分布不同,直接聚类可能效果差。
  • 跨模态/跨领域聚类:例如,利用文本数据帮助图像数据的聚类。
迁移学习应用的常见方法
  1. 特征迁移(Feature Transfer):源域预训练特征提取模型,然后提取目标域数据特征并进行聚类。

    • 例如,用ImageNet预训练的CNN提取医学图像特征,再进行聚类。
  2. 联合分布对齐(Joint Distribution Alignment):在聚类过程中同时优化源域和目标域的特征对齐。

    • 采用对抗训练、最大均值差异(MMD)或CORAL技术
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值