迁移学习(Transfer Learning)作为一种机器学习方法,主要通过将源域中学到的知识迁移到目标域,解决目标域中数据不足或标注困难的问题,尤其在无监督学习如聚类任务中具有显著优势。迁移学习的关键思想包括领域适应、知识共享和避免负迁移。它通过不同方式将源域的学习成果迁移至目标域,从而提高目标域学习效果。
迁移学习在聚类任务中的应用
聚类任务通常面临数据量少、领域漂移和跨模态数据的挑战,迁移学习在解决这些问题上表现出色:
- 目标域数据量少:源域数据帮助目标域补充特征学习。
- 领域漂移:源域和目标域数据分布不同,直接聚类可能效果差。
- 跨模态/跨领域聚类:例如,利用文本数据帮助图像数据的聚类。
迁移学习应用的常见方法
-
特征迁移(Feature Transfer):源域预训练特征提取模型,然后提取目标域数据特征并进行聚类。
- 例如,用ImageNet预训练的CNN提取医学图像特征,再进行聚类。
-
联合分布对齐(Joint Distribution Alignment):在聚类过程中同时优化源域和目标域的特征对齐。
- 采用对抗训练、最大均值差异(MMD)或CORAL技术