成大事大模型实战训练系列
文章平均质量分 94
面向已掌握PyTorch基础的开发者,深入大模型应用开发的实战课程体系!
成大事AI
知名资深全能技术大咖,国产野生钢铁侠,新能源车载嵌入式、AI从业者成老师(叫我成大事就可以了),长期关注前沿技术与应用。主页有非常多而全面的学习笔记与文章专栏,一起学习与进步的小伙伴们提供文稿与图文素材,我作为主笔人的身份运营此账号。
好学习方法和学习笔记真的很重要,同样的工作年限可能能力天差地别,混十年的不一定比得上从业刚一年的,希望各位爱学习的学霸们,从我的博客笔记中学习到对你们有利的知识点,少走点弯路,节约各位搜集和整理系统知识点的时间成本和精力成本。
一定一定要相信自己,相信自己一定可以成为技术大咖,未来可期!不负韶华!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大模型实战训练(7)大模型评测与优化:性能提升30%+的秘密
这篇文章摘要如下: 《大模型评测与优化实战指南》是一篇全面介绍大模型性能优化的技术文章。文章从评测指标体系和优化技术两个维度展开,重点讲解了如何提升大模型推理速度、降低资源消耗并保证生成质量。 核心内容包括: 评测指标体系:详细介绍了BLEU、ROUGE、BERTScore等质量指标和延迟、吞吐量等性能指标 优化技术:涵盖模型量化、剪枝、蒸馏等方法,以及vLLM、TensorRT等推理加速框架 实践指导:提供完整的代码示例和环境配置指南 成本优化:分享降低GPU使用成本的实用技巧 文章采用"理论+原创 2025-10-23 11:30:12 · 620 阅读 · 0 评论 -
大模型实战训练(6)Prompt Engineering提示词工程:让大模型更聪明
摘要:Prompt Engineering提升大模型输出质量的关键技巧 本课程系统介绍了优化大模型输出的Prompt Engineering技术。通过对比案例展示,精心设计的Prompt可使输出质量提升50%+,任务完成度从60%提升至95%。课程涵盖四大模块:基础技巧(CLEAR法则)、进阶方法(Few-shot学习/思维链推理)、优化策略(模板库/A/B测试)和实战应用(内容生成/代码生成)。重点强调Prompt设计的三个层次,从简单提问到包含角色、要求、风格等要素的完整设计。原创 2025-10-23 11:27:11 · 671 阅读 · 0 评论 -
大模型实战训练(5)多模态大模型应用:图文音视频统一建模
多模态大模型应用实战摘要 本课程聚焦多模态大模型技术,重点讲解CLIP/BLIP等模型在图文理解、跨模态生成等场景的应用。课程内容涵盖: 核心原理:深入解析对比学习机制,通过图文特征对齐实现跨模态理解 关键技术:详解温度系数调节、相似度矩阵计算等核心实现细节 应用实践:包括图像描述生成、视觉问答、以图搜图等典型场景 发展脉络:梳理从早期特征拼接到大模型时代的演进历程 课程提供完整代码示例(含对比学习损失函数实现)和可视化分析,帮助开发者快速掌握多模态AI的核心技术和应用方法。原创 2025-10-23 11:04:59 · 400 阅读 · 0 评论 -
大模型实战训练(4)AI Agent智能体开发:从工具调用到自主规划
《大模型实战训练:AI Agent智能体开发》课程摘要 本课程系统讲解AI Agent开发全流程,重点覆盖三大核心能力:工具调用、任务规划和自主执行。课程从原理到实践,手把手指导学员构建真正的智能助手,内容包含: 1️⃣ 核心架构:详解Agent工作原理及主流框架(ReAct、ReWOO) 2️⃣ 关键能力:实现函数调用、多轮对话记忆、任务分解 3️⃣ 实战项目:开发多Agent协作系统,部署生产级应用 4️⃣ 技术栈:集成OpenAI/国产大模型API,结合向量数据库等工具链。原创 2025-10-23 10:10:55 · 426 阅读 · 0 评论 -
大模型实战训练(3)RAG检索增强生成系统:企业知识库实战
本文介绍了RAG(检索增强生成)系统的原理、优势及实现方法。RAG通过先检索相关文档再生成答案的方式,解决了大模型幻觉、知识更新滞后和私有数据访问等问题。文章对比了纯大模型、微调和RAG三种方案,详细说明了RAG系统的四大优势:准确性高、实时更新、成本低和可解释性强。同时提供了完整的RAG工作流程,包括文档加载、分块处理、向量化和存储检索等关键步骤,并给出了Python代码示例。最后指出RAG特别适合企业知识库建设,能有效处理PDF、Word等多种格式文档,构建智能问答系统。原创 2025-10-23 10:01:53 · 395 阅读 · 0 评论 -
大模型实战训练(2)大模型高效微调技术:LoRA/QLoRA实战指南
本文介绍了大模型高效微调技术LoRA/QLoRA的实战指南。主要内容包括: 技术原理:对比全量微调与参数高效微调(PEFT)的差异,LoRA通过低秩矩阵分解(ΔW=B×A)仅训练0.1%参数,显存需求降低99.6%。 核心优势: 16GB显卡即可微调7B模型 训练速度提升5-10倍 有效防止过拟合 技术实现:详细解析LoRA层的代码实现,展示如何将4096×4096矩阵分解为两个低秩矩阵(如8×4096和4096×8),参数量从1677万降至6.5万。 方法对比:分析LoRA/QLoRA与其他微调方法原创 2025-10-22 10:27:30 · 1435 阅读 · 0 评论 -
大模型实战训练(1)大模型基础与Transformers库入门
🎯 学习路线图🔧 第零部分:环境配置详解(手把手教学)0.1 Python环境搭建 🐍步骤1:安装Anaconda(推荐)步骤2:创建虚拟环境💡 为什么要用虚拟环境?步骤4:验证PyTorch安装预期输出示例:0.2 Transformers库安装详解 📦完整安装流程配置国内镜像(解决下载慢问题)🚀创建配置文件在项目根目录创建 文件:0.3 项目结构搭建 📁创建标准项目结构目录结构说明:完整的 requirements.txt安装所有依原创 2025-10-22 10:02:15 · 971 阅读 · 0 评论 -
大模型实战训练课程|从入门到精通的完整路径
这篇大模型实战训练课程体系文章摘要如下: 该课程为12周系统化学习路径,面向具备PyTorch基础的开发者,分三个阶段: 基础篇(4周):涵盖大模型基础、LoRA微调、RAG系统和Agent开发等核心模块 进阶篇(4周):深入多模态应用、Prompt工程、模型优化与安全对齐等高级主题 实战篇(4周):通过智能客服、企业知识库和AI助手三大商业级项目巩固技能 课程特色包括项目驱动学习、完整工程实践、前沿技术覆盖和系统化知识架构。配套提供代码仓库、数据集、模型文件和部署脚本等资源,建议每周投入20+小时原创 2025-10-22 09:29:44 · 1323 阅读 · 0 评论
分享