- 博客(4)
- 收藏
- 关注
原创 苹果显示器(Apple Cinema Display)连接Windows的亮度调节方法(Win10可用)
直接说结论:Windows用户下载Desktop Lighter使用,轻松解决。Mac用户可以考虑下载shades。说一下事情原委。家里有一台闲置的旧款Apple Cinema Display 27寸版,就是苹果专门给Macbook设计的显示器,27寸2K分辨率,自带扬声器和hub功能(可以给Macbook供电,背后还有几个USB口)。如果是给旧款Macbook使用那是非常实用,但苹果的惯性就...
2020-04-08 12:49:49
9432
4
原创 《动手学深度学习》组队学习 Task06-08
Task06 批量归一化对输入的标准化(浅层模型)处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近.批量归一化(深度模型)利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。分为:1.对全连接层做批量归一化。位置:全连接层中的仿射变换和激活函数之间。2.对卷积层做批量归一化。位置...
2020-02-25 22:50:10
166
原创 《动手学深度学习》组队学习 Task03-05
Task 03过拟合、欠拟合及其解决方案本节主要内容有三点:1.过拟合、欠拟合的概念2.权重衰减3.丢弃法这里对过拟合、欠拟合的概念解释,引入了两个我之前没重视的概念:训练误差和泛化误差。训练误差(training error),指模型在训练数据集上表现出的误差;泛化误差(generalization error),指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数...
2020-02-18 21:51:03
218
原创 《动手学深度学习》组队学习 Task01 02
Task 01线性回归本次学习从最基础的线性回归开始,也是最典型的例子:预测房价。两个权重一个偏置,数据是生成的也能完美拟合线性回归,所以对初学者来说是个很好的示范。主要内容包括:线性回归的基本要素线性回归模型从零开始的实现线性回归模型使用pytorch的简洁实现基本要素是过了一遍基本公式,房价模型、损失函数、随机梯度下降优化函数等。其中令我有点眼前一亮的就是一个矢量计算的例子代码。...
2020-02-14 20:59:56
234
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人