- 博客(34)
- 收藏
- 关注
原创 TOOD_R50_FPN_Anchor-Based_1x_COCO_列车悬挂部件检测分类实战
本文详细介绍了基于TOOD_R50_FPN模型的列车悬挂部件检测分类系统的设计与实现。通过合理的数据准备、模型设计和训练配置,我们实现了高精度的悬挂部件检测,并成功部署到实际应用中。实验结果表明,该系统能够有效提升铁路巡检的效率和准确性,具有重要的实用价值。随着深度学习技术的不断发展,目标检测领域将涌现更多创新方法。未来,我们将继续探索更先进的算法和技术,进一步提升系统的性能和实用性,为铁路运输安全保驾护航。同时,我们也希望开源我们的数据和模型,为相关领域的研究者提供参考,共同推动智能检测技术的发展。
2026-01-18 13:59:20
653
原创 金丝猴目标检测模型:基于YOLOv8-EfficientRepBiPAN的网络改进与实现
本文提出了一种改进的YOLOv8-EfficientRepBiPAN模型用于金丝猴目标检测。针对金丝猴多尺度变化和复杂背景问题,模型通过引入轻量化EfficientRepBiPAN结构优化特征融合,结合残差连接和跨尺度连接增强特征表达能力。实验表明,改进模型在保持32FPS实时检测速度的同时,mAP达到89.3%,较原始YOLOv8提升4.3%,尤其对小目标检测效果显著提升7.8%。该研究为野生动物保护提供了有效的技术方案。
2026-01-18 12:22:30
687
原创 YOLOV8管道泄漏检测系统完整实现从数据集准备模型训练到实际部署应用详解
本文详细介绍了基于YOLOV8的管道泄漏检测系统完整实现方案。针对传统检测方法效率低、准确性差等问题,提出改进的YOLOV8-Starnet模型,通过引入注意力机制和优化特征融合策略,显著提升检测性能。系统构建了包含5000张图像的专业数据集,采用多种数据增强方法提升模型泛化能力。实验表明,改进模型在mAP@0.5指标上达到0.893,较原始YOLOV8提升5.1%,同时实现轻量化设计,推理速度提升3倍。该系统为工业管道安全监测提供了高效可靠的解决方案,具有重要的工程应用价值。
2026-01-18 10:47:07
598
原创 YOLOv8-SEG齿轮缺陷检测与分类系统实现_LAWDS
本文提出了一种基于改进YOLOv8-SEG的齿轮缺陷检测系统LAWDS。通过引入多尺度卷积注意力机制(MSCA)和区域注意力模块(A²),系统在齿轮表面裂纹、点蚀等缺陷检测中mAP@0.5指标提升8.7%。实验结果表明,改进模型在保持实时性的同时显著提升了检测精度。系统采用端到端设计,包含数据采集预处理、模型训练优化和缺陷检测分类三大模块,为工业齿轮缺陷检测提供了高效解决方案。
2026-01-17 17:12:44
554
原创 yolo13-C3k2-WDBB_海下垃圾清理机器人环境感知与障碍物识别系统_1
从Faster R-CNN到YOLOv8,目标检测技术经历了从复杂到简洁、从两阶段到一阶段的演进。每种模型都有其独特的优势和适用场景。理解这些模型的原理和特点,有助于我们在实际项目中做出最佳选择。无论你是初学者还是资深研究者,希望本文都能为你提供有价值的参考。目标检测技术仍在快速发展,保持学习和探索的态度,才能在这个充满机遇的领域中不断进步。
2026-01-17 15:35:55
583
原创 YOLOv8-ReCalibrationFPN-P2345魔方几何形状识别详解
文章摘要 本研究提出了一种改进的YOLOv8-ReCalibrationFPN-P2345模型用于魔方几何形状识别。该模型在标准YOLOv8基础上引入ReCalibrationFPN模块(包含通道注意力机制)和P2345检测头优化,显著提升了魔方小目标检测和颜色分类性能。实验采用10,000张魔方图像数据集,结果显示改进模型达到96.2%准确率和96.6%召回率,较基础YOLOv8提升3.9%。研究解决了魔方识别中的小目标检测、颜色区分和几何变形等挑战,通过特征金字塔优化和多尺度训练策略有效提升了检测精度。
2026-01-17 14:09:52
656
原创 YOLO11-FDPN-DASI:基于改进YOLO的输送带火灾检测与状态识别系统
YOLO11-FDPN-DASI:基于改进YOLO的输送带火灾检测系统 摘要: 本文提出了一种改进的YOLO11目标检测系统(YOLO11-FDPN-DASI),专门用于工业输送带火灾检测与状态识别。该系统通过引入特征金字塔网络(FDPN)和双注意力机制(DASI)模块,显著提升了火灾检测性能。核心创新包括:1)改进的特征金字塔网络实现双向多尺度特征融合;2)DASI模块通过通道分割和自适应采样增强特征表达能力;3)Bag机制实现智能特征加权融合。实验结果表明,该系统在自建数据集上达到91.3%的mAP@0
2026-01-17 12:30:04
615
原创 基于Grid-RCNN的胎儿16种异常检测:从阿诺德-奇畸形到大脑大静脉畸形的全类型识别
本文提出了一种基于Grid-RCNN的深度学习模型,用于自动检测胎儿16种常见异常类型。该方法通过网格提议生成和特征对齐机制,有效提高了对胎儿超声图像中复杂形态异常的识别精度。实验结果表明,该模型平均精确率达到83.7%,优于传统检测方法。临床测试显示系统可将诊断准确率提高12.5个百分点,显著降低罕见异常的漏诊率。尽管面临图像质量波动等挑战,该技术已在国内多家医院成功应用,为产前诊断提供了可靠的辅助工具。未来研究将进一步优化模型以适应更广泛的异常类型和复杂病例。
2026-01-17 10:50:23
572
原创 基于YOLOv10n的人脸口罩检测模型_结合FocalModulation改进技术_提升口罩检测精度与效率_1
本文提出了一种基于YOLOv10n结合FocalModulation的人脸口罩检测模型。针对传统方法在复杂场景下性能不足的问题,通过改进特征提取模块和优化损失函数,显著提升了检测精度。实验表明,改进后的模型在公开数据集上mAP达到91.8%,比原始YOLOv10n提升2.5%,同时保持102FPS的实时检测速度。该模型通过量化优化可部署至边缘设备,为疫情防控提供高效解决方案。
2026-01-16 17:07:29
496
原创 药盒日期识别|基于RetinaNet的智能识别系统详解
本文介绍了一种基于RetinaNet的药盒日期智能识别系统。该系统采用深度学习技术,通过RetinaNet进行日期文本区域检测,结合CRNN网络实现文本识别。文章详细阐述了数据集的构建过程(包括数据增强策略和分层采样方法)、RetinaNet模型架构(特别是Focal Loss的设计和多尺度检测策略),以及文本识别模块的实现。系统通过分离检测与识别任务,有效提升了药盒日期识别的准确性和鲁棒性,能够处理不同尺寸、角度和光照条件下的药盒图像,为药品管理提供了智能化解决方案。
2026-01-16 15:38:27
504
原创 基于改进模型GFL_R101_FPN_MS-2x_COCO的肠球菌检测识别方法详解
本文介绍了基于PySide6框架开发的深度学习模型识别系统,重点阐述了其在医疗图像肠球菌检测中的应用。系统采用组件化设计,包含15种功能组件,支持多种识别模式(图片、视频、摄像头、批量处理)。核心架构包括模型识别窗口类、识别工作线程和批量处理线程,实现了多线程异步处理、实时性能监控和结果可视化展示。特别针对高分辨率医学图像设计了优化方案,通过改进的GFL_R101_FPN_MS-2x_COCO模型显著提升了检测准确率和效率。系统支持批量图片处理和文件夹扫描功能,为医疗图像分析提供了高效可靠的解决方案。
2026-01-16 14:05:51
585
原创 基于改进Mask R-CNN和RegNetX的茄子品质智能检测分类系统_2
本文提出了一种基于改进Mask R-CNN和RegNetX的茄子品质智能检测分类系统。该系统采用深度学习与图像处理技术相结合的方法,通过图像采集、预处理、特征提取和品质分类模块实现茄子品质的自动化检测。改进的Mask R-CNN模型引入注意力机制和双向特征融合,提高了检测精度;RegNetX作为主干网络则保证了计算效率。实验表明,该系统在测试集上表现优异,能够实时处理茄子图像并准确分类品质等级。该系统可应用于农业生产、加工和质量控制等环节,为农业智能化发展提供技术支持,具有重要的应用价值和社会意义。
2026-01-16 12:31:10
665
原创 改进YOLO13模型:C3k2与PPA优化在油田工人安全装备检测与行为识别中的应用
摘要:本研究提出改进YOLO13模型,通过引入C3k2模块(融合k-means聚类和通道注意力机制)和PPA优化技术,显著提升了油田工人安全装备检测性能。实验结果表明,改进后的YOLO13-C3k2-PPA模型在自建数据集上mAP达89.6%,FPS提升至45帧/秒,模型体积减小12MB,更适合边缘设备部署。该方案有效解决了油田环境下光照变化、背景干扰等挑战,为安全生产管理提供了高效的计算机视觉解决方案。
2026-01-16 09:48:31
615
原创 基于YOLO11-C3k2-EBlock的多目标检测与识别——人行横道、门、行人和楼梯的实时检测与定位
摘要:本文介绍了基于改进YOLO11架构的多目标检测系统,创新性地融合C3k2模块和EBlock结构,实现了对人行横道、门、行人和楼梯的高精度实时检测。系统采用动态锚框生成、自适应图像缩放等优化策略,在10,000张标注图像的数据集上训练后,平均mAP达到0.95,推理速度达15FPS。同时,文章还系统梳理了YOLO系列从v1到v13的技术演进,重点分析了单阶段检测的数学原理和架构创新,展示了目标检测技术在智能安防、城市规划等领域的应用前景。
2026-01-15 18:33:42
490
原创 【深度学习】基于YOLO11的数字仪表识别与分类实现_HAFB_1
本文介绍了基于YOLO11的数字仪表识别技术,通过深度学习实现工业场景中仪表数据的自动读取与分类。YOLO11作为单阶段目标检测算法,结合CSPDarknet、FPN和PAN网络结构,在保持高速度的同时提升了检测精度。文章详细阐述了数据集准备、模型训练与优化过程,包括损失函数设计、参数设置和性能评估指标。实验结果显示,该系统在测试集上达到92.3%的mAP和15ms的推理速度。最后探讨了系统部署方案及未来改进方向,如多任务学习和小样本适应等。该技术为工业自动化提供了高效的智能化解决方案。
2026-01-15 16:56:40
574
原创 【扑克牌识别】基于YOLO11-ConvNeXtV2的高效扑克牌检测系统_1
本文介绍了一种基于YOLO11-ConvNeXtV2混合架构的高效扑克牌检测系统。该系统通过结合YOLO11的目标检测能力和ConvNeXtV2的强大特征提取能力,实现了98.5%的高识别准确率和30FPS以上的实时处理速度。系统采用10,000张标注图像的数据集,包含多种光照、角度和背景条件下的扑克牌样本,并通过数据增强技术提高模型泛化能力。训练过程中使用混合精度训练和优化策略加速收敛,同时采用模型轻量化、TensorRT优化等技术提升推理性能。该系统可应用于赌场监管、游戏辅助、教育娱乐等多个领域,具有广
2026-01-15 15:21:50
591
原创 车站客流状态图标识别与检测_yolo11-C3k2-MambaOut-FDConv_1
本文提出了一种基于YOLO11的车站客流状态智能识别系统,采用创新的C3k2-MambaOut-FDConv架构。系统通过C3k2注意力机制增强特征提取能力,MambaOut模块融合时空特征,FDConv动态卷积提升频域分析能力。实验表明,该模型在自建数据集上达到89.7%的mAP@0.5,比传统方法提升显著,且保持40FPS的实时性能。消融实验验证了各模块的有效性,实际部署中成功应用于闸机管理、站台监控等场景,显著提升了车站运营效率和安全预警能力。
2026-01-15 13:45:48
628
原创 购物车与人员检测识别系统:基于FSAF R101 FPN模型的实现详解
购物车与人员检测识别系统基于FSAF R101 FPN模型,实现了高精度的实时检测功能。通过精心设计的数据集、模型架构和训练策略,系统在购物车和人员检测任务上都取得了优异的性能。随着深度学习技术的不断发展,这类智能检测系统将在零售和安防领域发挥越来越重要的作用。未来,我们将继续优化系统性能,拓展应用场景,为智慧城市建设贡献力量。通过本文的详细介绍,相信读者已经对购物车与人员检测识别系统的实现有了全面的了解。希望这个系统能够启发更多创新应用,共同推动计算机视觉技术的进步。🚀💻🎯。
2026-01-15 12:11:56
630
原创 yolo11-seg-ADown改进详解__仰卧起坐动作检测实战教程附代码实现
本文介绍了一种基于改进YOLO11-seg-ADown模型的仰卧起坐动作检测系统。该系统通过引入ADown(注意力下采样)模块增强特征提取能力,实现了对人体仰卧起坐动作的精确检测和像素级分割。文章详细讲解了项目实现流程,包括数据集准备(建议500+标注样本)、模型改进原理(ADown模块通过注意力机制自适应下采样)以及核心代码实现。该项目适用于健身教练、康复医疗和家庭健身监测场景,能自动评估动作标准度并提供实时反馈。文中还提供了数据集划分代码示例和训练技巧,完整项目源码可参考相关资源链接获取。
2026-01-10 11:03:26
943
原创 【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
本文提出了一种改进的YOLOv8-MFMMAFPN模型用于泡沫检测,通过引入多尺度特征融合(MFM)和改进的多尺度注意力机制(MAFPN),显著提升了检测性能。实验结果表明,该模型在mAP@0.5和mAP@0.5:0.95指标上分别达到0.895和0.712,优于原始YOLOv8n模型。文章详细介绍了从数据准备、增强策略到模型训练优化的完整流程,包括创新的损失函数设计和分阶段训练策略。该方法在保持135FPS推理速度的同时,为工业泡沫检测提供了高效解决方案。
2026-01-09 20:16:26
824
原创 【深度学习实战】YOLO13-C3k2-OREPA模型改进:玻璃物品检测识别系统开发详解
本文详细介绍了基于YOLOv13改进的玻璃物品检测系统开发。针对玻璃物品透明、反光的特性,设计了C3k2-OREPA模块,结合改进卷积核与注意力机制,有效提升了检测精度。系统采用12,000张图像的专用数据集,通过特殊数据增强策略增强模型泛化能力。实验表明,该方法在mAP指标上达到92.6%,优于主流检测算法,尤其在小物体检测上表现突出。系统已成功应用于智能仓储、工业质检等领域,展现了良好的鲁棒性和实用价值。
2026-01-02 12:36:54
848
原创 YOLO11-MAN:多品种植物叶片智能识别与分类详解
摘要: 本文提出了一种基于YOLO11和MANet的多品种植物叶片智能识别系统YOLO11-MAN,用于农业病虫害监测和品种鉴别。该系统结合YOLO11的高效目标检测能力与自主研发的MANet多尺度聚合网络,通过深度可分离卷积优化和通道注意力机制,实现了95.3%的mAP准确率。实验表明,该系统在10类植物叶片数据集上性能优于主流模型,且计算效率高,适用于边缘设备部署。消融实验验证了各模块的有效性,为农业智能化提供了可靠的解决方案。
2026-01-02 11:59:50
830
原创 YOLO12-A2C2f-DFFN-DYT-Mona:伐木卡车智能识别与定位系统实战
本文提出了一种基于YOLO12-A2C2f-DFFN-DYT-Mona架构的伐木卡车智能识别系统,该系统创新性地结合了自适应注意力机制(A2C2f)、动态特征融合网络(DFFN)、时序注意力模块(DYT)和多目标关联算法(Mona)。实验表明,该系统在林业环境中实现了93.8%的精确率和92.5%的召回率,显著优于传统方法。通过模型轻量化和边缘计算优化,系统可在嵌入式设备上实时运行,已成功应用于多个林场的智能监测,有效提升了森林资源管理效率。该系统为林业智能化管理提供了可靠的技术解决方案。
2025-12-30 12:17:07
744
原创 鸡蛋裂纹检测系统:基于YOLO11-ADown的改进实现
本文介绍了一种基于YOLO11-ADown的鸡蛋裂纹检测系统,通过改进特征提取机制和优化网络结构,实现了高精度、高效率的裂纹检测。实验结果表明,该系统在准确性和实时性方面均表现优异,具有良好的应用前景。多模态融合:结合热成像或X射线技术,提高对不同类型裂纹的检测能力自监督学习:减少对标注数据的依赖,降低数据采集成本模型轻量化:进一步压缩模型大小,适应边缘计算设备端到端优化:从图像采集到结果输出进行全流程优化随着技术的不断进步,鸡蛋裂纹检测系统将更加智能化、精准化,为食品安全保驾护航。
2025-12-25 15:55:59
763
原创 混凝土裂缝分割_YOLOv8-CSP-FreqSpatial模型详解与实战
本文提出了一种基于改进YOLOv8的混凝土裂缝检测模型YOLOv8-CSP-FreqSpatial,通过引入CSP结构和频率-空间注意力机制,有效提升了裂缝分割精度。该模型在骨干网络中采用优化后的CSP模块增强特征提取能力,在颈部结构引入自适应特征融合机制,并针对裂缝特点优化检测头设计。实验表明,改进模型在自建数据集上mAP达到0.876,较原始YOLOv8提升6.5%,同时保持良好实时性(13.8ms/帧)。工程应用验证表明,该技术可显著提升检测效率,降低人工成本和安全风险。研究为混凝土结构健康监测提供了
2025-12-25 15:14:04
762
原创 基于YOLOv8-P6的油田抽油机多目标检测与状态识别方法研究
本文提出了一种基于YOLOv8-P6的油田抽油机多目标检测与状态识别方法。通过引入P6特征金字塔结构改进YOLOv8网络,提高了对小目标的检测精度(mAP达86.2%)。该方法采用多任务损失函数和数据增强技术,在自建数据集上实现了抽油机主要部件的精确检测,并基于部件状态实现了92.5%的运行状态识别准确率。实验表明,相比于YOLOv5/YOLOv7等算法,YOLOv8-P6在保持实时性(40FPS)的同时显著提升了检测性能。研究成果已应用于油田智能监控系统,为抽油机状态监测提供了有效的技术解决方案。
2025-11-11 22:19:15
648
原创 【技术详解】电力设施‘tyap‘目标检测与识别系统实现
本文介绍了基于深度学习的电力设施'tyap'目标检测与识别系统。该系统采用改进的YOLOv8算法进行目标检测,结合ResNet-50分类模型实现状态识别,通过模块化设计完成从图像采集到结果展示的全流程。系统支持多种数据源输入,并针对电力场景进行了预处理优化和模型训练策略改进。性能测试显示,系统在检测准确率(95.2%)和处理速度(30FPS)方面表现优异,已成功应用于输电线路巡检、变电站监测等场景。未来将探索多模态融合和边缘计算等技术,以进一步提高系统在复杂环境下的检测能力。
2025-11-11 21:50:57
740
原创 混凝土结构缺陷检测_YOLO11-AFPN-P345模型实现与优化实录
本文介绍了一种基于YOLO11-AFPN-P345模型的混凝土结构缺陷自动检测方法。通过引入自适应特征金字塔网络(AFPN)和优化的P345特征融合策略,显著提升了模型对小尺寸缺陷的检测能力。详细阐述了从数据集准备、数据增强到模型训练与优化的完整流程,包括针对混凝土缺陷特点的针对性增强技术和基于难度的加权损失函数设计。实验结果表明,该方法在保持高精度的同时优化了推理速度,有效解决了传统人工检测效率低、易漏检的问题,为建筑安全提供了可靠的自动化检测解决方案。
2025-11-09 22:02:10
1084
原创 YOLOv3车牌识别实战:基于D53骨干网络的8xb8-ms-608-273e模型训练与优化
本文详细介绍了一种基于YOLOv3和D53骨干网络的车牌识别系统,通过8xb8-ms-608-273e的训练策略对模型进行优化。实验结果表明,改进后的模型在复杂场景下具有更高的准确率和鲁棒性。我们希望本文的研究能够为车牌识别技术的研究和应用提供有价值的参考,推动智能交通系统的发展。本项目成功构建了基于D53骨干网络的YOLOv3车牌识别系统,通过8xb8-ms-608-273e的训练配置实现了高精度、实时性的车牌检测。
2025-11-09 21:38:23
860
原创 数字电路逻辑门识别与分类_YOLOv8与GDFPN结合应用_3
摘要: 本研究提出了一种结合YOLOv8与改进GDFPN的数字电路逻辑门识别方法。通过构建包含5000张电路板图像的自建数据集,采用自适应直方图均衡化和多尺度特征增强预处理,设计了融合全局注意力机制的GDFPN网络。实验表明,该方法在mAP@0.5指标上达到89.7%,较基准模型提升2.5%,推理速度保持10.3ms/帧,显著提升了小尺寸逻辑门的检测精度。该方法已成功应用于工业质检场景,检测效率提升6倍,为电子制造自动化提供了有效解决方案。未来将探索3D视觉技术和小样本学习以进一步优化性能。
2025-11-07 20:52:14
752
原创 游泳比赛运动员检测与状态识别基于YOLOv8-ContextGuideFPN实现_1
本文提出了一种基于YOLOv8-ContextGuideFPN的游泳运动员检测与状态识别方法,通过引入上下文引导的特征金字塔网络增强特征提取能力。该方法在自建数据集上实现了95.3%的检测mAP和87.6%的状态识别准确率,优于现有方法。实验表明,ContextGuideFPN模块能有效提升模型在复杂游泳场景下的性能。未来可扩展多视角融合和时序建模以进一步提升系统性能。
2025-11-06 17:20:29
949
原创 心肺复苏中手部、头部和救援设备的检测与定位:基于Mask R-CNN与RegNetX的改进方案
摘要: 本文提出基于Mask R-CNN与RegNetX的改进方案,用于CPR场景中手部、头部和救援设备的精准检测与定位。通过构建包含5000+标注图像的CPR数据集,引入RegNetX主干网络和双向特征金字塔网络(BiFPN)优化模型结构。改进的加权损失函数针对不同目标设置差异化权重,并采用Focal Loss解决类别不平衡问题。实验表明,该方法比原始Mask R-CNN提高3.2% mAP,关键目标检测精度显著提升。研究为CPR操作的实时智能指导提供了有效技术方案。(148字)
2025-11-06 16:55:40
898
原创 机场登机桥检测与识别:基于Mask R-CNN的改进模型实现
本文提出了一种基于改进Mask R-CNN的机场登机桥检测与识别方法。针对登机桥检测的特殊需求,模型引入了特征融合模块、混合注意力机制和优化损失函数等改进措施。实验结果表明,改进后的模型在自建数据集上达到了0.856的mAP值,显著优于原始Mask R-CNN。该方法能有效检测不同角度和光照条件下的登机桥,为机场智能化管理提供了技术支持。
2025-11-05 18:31:47
667
原创 最新opencv安装及配置教程VS2019
进入到以下链接:https://opencv.org/releases/ , 点击Windows,即可下载。笔者下载的是opencv 4.4.0 ,如果想尝试预发行版,可以选择opencv 4.5.0。接下来,点击链接器,点击输入,点击附加依赖项,点击右边的下拉三角形,点击编辑,将如下目录输入即可,点击VC ++ 目录, 点击包含目录,点击右边的下拉三角形,点击编辑,将如下目录输入即可,点击确认,然后,点击库目录,点击右边的下拉三角形,点击编辑,将如下目录输入即可,点击应用,点击确认,等待配置完成。
2025-10-01 19:25:30
307
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅