动手学深度学习
文章平均质量分 60
顺顺不吃竹笋
这个作者很懒,什么都没留下…
展开
-
4 多层感知机-个人理解
多层感知机是一组前向结构的人工神经网络,映射一组输入向量到一组输出向量。除了输入节点,每一个节点都是一个带有非线性激活函数的神经元。多层感知机在输入层和输出层之间添加了一个或者多个隐藏层,并通过激活函数转换隐藏层输出。以下介绍几种激活函数。原创 2023-08-25 17:50:41 · 229 阅读 · 0 评论 -
13 计算机视觉-代码详解
为了防止在训练集上过拟合,有两种办法,第一种是扩大训练集数量,但是需要大量的成本;第二种就是应用迁移学习,将源数据学习到的知识迁移到目标数据集,即在把在源数据训练好的参数和模型(除去输出层)直接复制到目标数据集训练。有时候不仅要识别图像的类别,还需要识别图像的位置。在计算机视觉中叫做目标识别或者目标检测。这小节是介绍目标检测的深度学习方法。原创 2023-08-15 13:11:37 · 2214 阅读 · 0 评论 -
3 线性神经网络-代码详解
"""线性回归模型y=wx+b""""""损失函数0.5*(y_hat-y)^2 预测值y_hat 真实值y""""""小批量随机梯度下降法"""def sgd(params, lr, batch_size): #params是【w】,【b】with torch.no_grad(): #停止对梯度计算和存储,减少内存消耗,不会进行反向传播param.grad.zero_() #清除param的梯度值# nn是神经网络的缩写# nn.Linear设置全连接层,输入张量大小为2,输出张量大小为1。原创 2023-08-11 23:27:22 · 309 阅读 · 0 评论