RQNOJ 找啊找啊找GF

题目链接 http://www.rqnoj.cn/Problem_57.html
此题是二维费用背包

问题

二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。

算法

费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:

f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}

如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用逆序的循环,当物品有如完全背包问题时采用顺序的循环。当物品有如多重背包问题时拆分物品。这里就不再给出伪代码了,相信有了前面的基础,你能够自己实现出这个问题的程序。

物品总个数的限制

有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。

复数域上的背包问题

另一种看待二维背包问题的思路是:将它看待成复数域上的背包问题。也就是说,背包的容量以及每件物品的费用都是一个复数。而常见的一维背包问题则是实数域上的背包问题。(注意:上面的话其实不严谨,因为事实上我们处理的都只是整数而已。)所以说,一维背包的种种思想方法,往往可以应用于二位背包问题的求解中,因为只是数域扩大了而已。

小结

当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。

当然此题还有一个时间最少的限制我们可以直接比较泡MM的个数,个数相同时在比较时间的多少。

#include <stdio.h>
#include <string.h>

#define MAX 1000

int n, rmb[MAX], rp[MAX], time[MAX], m, r;
int f[MAX][MAX], t[MAX][MAX];

int main()
{
	memset(f, 0, sizeof(f));
	memset(t, 0, sizeof(t));
	scanf("%d", &n);
	for(int i = 1; i <= n; i++)
	{
		scanf("%d%d%d", &rmb[i], &rp[i], &time[i]);
	}
	scanf("%d%d", &m, &r);
	for(int i = 1; i <= n; i++)
	{
		for(int j = m; j >= rmb[i]; j--)
		{
			for(int k = r; k >= rp[i]; k--)
			{
				if(f[j][k] < f[j - rmb[i]][k - rp[i]] + 1)
				{
					f[j][k] = f[j - rmb[i]][k - rp[i]] + 1;
					t[j][k] = t[j - rmb[i]][k - rp[i]] + time[i];
				}
				else
				{
					if(f[j][k] == f[j - rmb[i]][k - rp[i]] + 1)
					{
						if(t[j][k] > t[j - rmb[i]][k - rp[i]] + time[i])
						{
							t[j][k] = t[j - rmb[i]][k - rp[i]] + time[i];
						}
					}
				}
			}
		}
	}
	printf("%d\n", t[m][r]);
} 

我们还可以通过一个简单的转换不需要判断,把时间最少转化成时间最多。
#include <stdio.h>
#include <string.h>
#define MAX 105

int n, i, j, k, r, m, t;
int dp[MAX][MAX], rmb[MAX], rp[MAX], T[MAX];

int main()
{
	scanf("%d", &n);
	for(int i = 1; i <=n; i++)
	{
		scanf("%d%d%d", &rmb[i], &rp[i], &t);
		T[i] = 100000 - t;
	}
	scanf("%d%d", &m, &r);
	memset(dp, 0, sizeof(dp));
	for(int i = 1; i <= n; i++)
	{
		for(j = m; j >= rmb[i]; j--)
		{
			for(k = r; k >= rp[i]; k--)
			{
				if(dp[j - rmb[i]][k - rp[i]] + T[i] > dp[j][k])
				{
					dp[j][k] = dp[j - rmb[i]][ k - rp[i]] + T[i];
				}
			}
		}
	}
	printf("%d\n", 100000 - dp[m][r] % 100000);
	return 0;
}

资料引自《背包九讲》


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值