Elasticsearch实战——mapping

Elasticsearch实战——mapping


Elasticsearch提供了足够多的映射参数对字段的映射进行参数设置,实现一些常用的功能,比如字段的分词器、日期格式、检索模型的选择等都是通过参数配置来完成的,下面一一介绍各个参数的用法。

1. analyzer

analyzer参数用于指定文本字段的分词器,对索引和查询都有效。分词器会把文本类型的内容转换为若干个词项,查询时分词器同样会把查询字符串通过和索引时相同的分词器或其他分词器进行解析。以常用的IK中文分词器为例,对于title字段,analyzer参数的取值为ik_max_word,意味着title字段内容索引时和查询时都使用ik_max_word分词,映射配置如下:

PUT website
{
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "analyzer":"ik_max_word"
            }
        }
    }
}

analyzer该参数可以在查询、字段、索引级别中指定,其优先级如下(越靠前越优先):

  1. 字段上定义的分词器
  2. 索引配置中定义的分词器
  3. 默认分词器(standard)

在查询上下文,分词器的查找优先为:

  1. full-text query中定义的分词器
  2. 定义类型映射时字段中search_analyzer定义的分词器
  3. 定义字段类型映射时analyzer定义的分词器
  4. 索引中default_search中定义的分词器
  5. 索引中默认定义的分词器
  6. 标准分词器(standard)

2. search_analyzer

大多数情况下索引和搜索的时候应该指定相同的分词器,确保query解析以后的索引中的词项一致。但是有时候也需要指定不同的分词器。例如,使用edge_ngram过滤器实现自动补全。默认情况下查询会使用analyzer属性指定的分词器,但也可以被search_analyzer覆盖。

示例如下:

PUT website
{
    "settings":{
        "analysis":{
            "filter":{
                "autocomplete_filter":{
                    "type":"edge_ngram",
                    "min_gram":1,
                    "max_gram":20
                }
            },
            "analyzer":{
                "autocomplete":{
                    "type":"custom",
                    "tokenizer":"standard",
                    "filter":[
                        "lowercase",
                        "autocomplete_filter"
                    ]
                }
            }
        }
    },
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "analyzer":"autocomplete",
                "search_analyzer":"standard"
            }
        }
    }
}

title字段使用autocomplete分词器进行分词,但是使用standard分词器进行搜索。索引一条文档:

PUT website/1
{
    "title":"Quick Brown Fox"
}

title字段生成的倒排索引包含以下词项:

[q, qu, qui, quic, quick, b, br, bro, brow, brown, f, fo, fox]

3. normalizer

normalizer参数用于解析前的标准化配置,注意针对keyword类型,比如把所有字符转化为小写。下面的例子中foo字段的值在解析前使用自定义的normalizer把字符串标准化并转化为小写的形式:

PUT website
{
    "settings":{
        "analysis":{
            "normalizer":{
                "my_normalizer":{
                    "type":"custom",
                    "char_filter":[],
                    "filter":["lowercase", "asciifolding"]
                }
            }
        }
    },
    "mappings":{
        "properties":{
            "foo":{
                "type":"keyword",
                "normalizer":"my_normalizer"
            }
        }
    }
}

4. boost

boost字段用于设置字段的权重。比如设置关键字出现在title字段的权重是出现在content字段中权重的两倍,其中content字段的权重默认是1,mapping如下:

PUT website
{
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "boost":2
            },
            "content":{
                "type":"text"
            }
        }
    }
}

也可以在查询时设置权重:

POST website/_search
{
    "query":{
        "match":{
            "title":{
                "query":"我是中国人",
                "boost":2
            }
        }
    }
}

推荐在查询的时候指定boost。在索引时设置权重,如果不重建索引,权重无法修改。在查询时指定权重可以达到同样的效果,修改权重更加灵活。

5. coerce

coerce属性用于清除脏数据,默认值是true。整型数字5有可能被写成字符串"5"或者浮点数5.0coerce属性可以用来清除脏数据,字符串和浮点数会被强制转换为整数。

6. copy_to

copy_to参数由于自定义_all字段,可以把多个字段的值复制到一个超级字段。下面的例子中把titlecontent字段的内容合并到full_content

PUT website
{
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "copy_to":"full_content"
            },
            "content":{
                "type":"text",
                "copy_to":"full_content"
            },
            "full_content":{
                "type":"text"
            }
        }
    }
}

7. doc_values

doc_values参数是为了加快排序、聚合操作。在建立倒排索引的时候,额外增加一个**列式存储映射**,是一种空间换时间的做法。默认是开启的,对于不需要聚合或排序的字段可以关闭doc_values节省空间。

PUT website
{
    "mappings":{
        "properties":{
            "status":{
                "type":"keyword"
            },
            "session_id":{
                "type":"keyword",
                "doc_values":false
            }
        }
    }
}

注意:text类型不支持doc_values

8. dynamic

mapping中可以通过dynamic设置是否自动新增字段,接受以下参数:

  • true:默认值,自动添加字段
  • false:忽略新字段
  • strict:严格模式,发现新字段抛出异常

使用方法:

PUT website
{
    "mappings":{
        "dynamic":"strict",
        "properties":{
            "title":{
                "type":"text"
            }
        }
    }
}

9. enabled

ES默认会索引所有的字段,而有些字段只需要存储,没有查询或者聚合的需求,这种情况下就可以使用enabled参数来控制。enabled设置为false的字段,ES会跳过字段内容,该字段的值只能从 _source中获取,但是不可以被搜索,字段可以是任意类型。例如:

PUT website
{
    "mappings":{
        "properties":{
            "name":{
                "enabled":false
            }
        }
    }
}

10. fielddata

text类型的字段的聚合可以开启fielddatafielddata在字段首次聚合、排序或者使用脚本的时候生成。ES通过读取磁盘上的倒排记录表重新生成文档词项关系,最后再Java堆内存中排序。

text字段的fielddata属性默认是关闭的,开启fielddata非常消耗内存。

text类型的字段开启fielddata的命令如下:

PUT website
{
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "fielddata":true
            }
        }
    }
}

11. format

ES中,使用format参数指定日期格式。

PUT website
{
    "mappings":{
        "properties":{
            "indexAt":{
                "type":"date",
                "format":"yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
            }
        }
    }
}

12. ignore_above

指定字符串最大长度,超过最大长度会被忽略,只用于keyword类型,示例如下:

PUT website
{
    mappings:{
        "properties":{
            "message":{
                "type":"keyword",
                "ignore_above":20
            }
        }
    }
}

13. ignore_malformed

ignore_malformed可以忽略不规则数据。给一个字段索引不合适的数据类型会发生异常,从而导致整个文档索引失败。如果ignore_malformed参数设置为true,异常会被忽略,出现异常的字段不会被索引,其他字段正常索引。

14. index

index属性指定字段是否索引,不索引也就不可以搜索,取值为truefalse

15. index_options

index_options参数控制索引时存储哪些信息到倒排索引中。设置title字段存储文档编号、词频、词的位置、词项开始和结束的字符位置,映射如下:

PUT website
{
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "index_options":"offsets"
            }
        }
    }
}

index_options参数取值表:

参数作用
docs只存储文档编号,默认取值
freqs存储文档编号和词项频率
positions存储文档编号、词项频率、词项偏移位置,偏移位置可用于临近搜索和短语查询
offsets文档编号、词项频率、词项的位置、词项开始和结束的字符位置都被存储,offset设为true会使用Postings highlighter

16. fields

fields参数可以让同一个字段有多种不同的索引方式。比如一个文本类型的字段,可以使用中文全文检索,使用拼音检索,映射如下:

PUT website
{
    "mappings":{
        "properties":{
            "title":{
                "type":"text",
                "analyzer":"ik_max_word",
                "search_analyzer":"ik_smart",
                "fields":{
                    "pinyin":{
                        "type":"text",
                        "analyzer":"pinyin"
                    }
                }
            }
        }
    }
}

17. norms

norms参数用于标准化文档,以便查询时计算文档的相关性。norms虽然对评分有用,但是会消耗较多的磁盘空间,如果不需要对某个字段进行评分,最好不要开启norms

18. null_value

值为null的字段不索引也不可以搜索,null_value参数可以让值为null的字段显示的可索引、可搜索。示例如下:

PUT website
{
    "mappings":{
        "properties":{
            "status":{
                "type":"keyword",
                "null_value":"NULL"
            }
        }
    }
}

PUT website/1
{
    "status":null
}

PUT website/2
{
    "status":[]
}

GET website/_search
{
    "query":{
        "term":{
            "status":"NULL"
        }
    }
}

文档1可以被搜索到,因为status的值为null文档2不可以被搜索到,因为status的值为空数组,但不是null

19. properties

类型的映射、普通字段、objet类型nested类型的字段都称为properties(属性),这些属性可以为任意的数据类型,包括objectnested类型,属性可以通过以下方式加入:

  • 在创建索引时明确的定义它们。
  • 在使用PUT mapping API 添加或更新映射类型时明确定义它们。
  • 索引包含新字段的文档时动态地加入。

20. similarity

similarity参数用于指定文档评分模型,参数有三个:

  • BM25ESLucene默认的评分模型。
  • classicTF/IDF评分模型。
  • boolean:布尔评分模型。
PUT website
{
    "mappings":{
        "properties":{
            "name":{
                "type":"text",
                "similarity":"classic"
            }
        }
    }
}

21. store

默认情况下,字段是被索引的,也可以搜索,但是不存储。因为_source字段里保存了一份原始文档。在某些情况下还是有意义的,比如不存储原始文件,只存储需要的几个字段。

PUT website
{
    "mappings":{
        "_source":{
            "enabled":false
        },
        "properties":{
            "title":{
                "type":"text",
                "store":true
            },
            "indexAt":{
                "type":"date",
                "store":true
            },
            "content":{
                "type":"text"
            }
        }
    }
}

22. term_vector

词向量包含文本被解析后的以下信息:

  • 词项集合
  • 词项位置
  • 词项的起始字符映射到原始文档中的位置

term_vector参数的取值表:

参数取值含义
no默认值,不存储词向量
yes只存储词项集合
with_positions存储词项和词项位置
with_offsets词项和字符偏移量
with_positions_offsets存储词项、词项位置、字符偏移位置

23. 关注我

搜索微信公众号:java架构强者之路
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值