Java8 Stream之筛选、归约、分组、聚合

本文深入探讨Java8的Stream API,包括通过集合、数组创建Stream,使用of(), iterate(), generate()方法,以及遍历、筛选、聚合、映射、归约、收集等操作。讲解了如何对Staff对象进行操作,如筛选高薪员工、计算最大值、分组、统计等,展示了Stream在数据处理中的强大功能。
摘要由CSDN通过智能技术生成

1、Stream概述

Java 8 是一个革命性的版本,这个版本新增的Stream、Optional 等,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。
Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Optional 类是 Java 8 引入的一个很有趣的特性。Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) 。
本质上,这是一个包含有可选值的包装类,这意味着 Optional 类既可以含有对象也可以为空。

这篇文章只讲StreamOptional会单独写一篇文章。

Stream有几个特性:

  1. stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
  2. stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
  3. stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

2、Stream的创建方式

2.1、通过集合创建

//第一种
List<String> list = new ArrayList<>();
list.add("a");
list.add("b");
//第二种
//List<String> list = Arrays.asList("a", "b", "c");
// 顺序流
Stream<String> stream = list.stream();
// 并行流,第一种方式
Stream<String> parallelStream = list.parallelStream();
//第二种方式创建并行流,把顺序流转换成并行流
Stream<String> parallelStream = list.stream().parallel();

streamparallelStream区分:
stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。

2.2、通过数组创建

String[] array={"a","b"};
Stream<String> stream = Arrays.stream(array);

2.3、使用Stream的静态方法:of()、iterate()、generate()

int[] array={1,2,3,4};
//public static<T> Stream<T> of(T... values) 
Stream<String> stream = Stream.of(array);
//按规则迭代出3个数
Stream<Integer> stream2 = Stream.iterate(0, (x) -> x * 2).limit(3);
stream2.forEach(System.out::println);
//随机生成3个数
Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

3、Stream的API使用

测试实体:

@data
public class Staff{
	// 姓名
	private String name; 
	// 薪资
	private int salary;
	// 年龄
	private int age;
	private String sex;
	private String area;  // 地区
}

3.1、遍历/匹配(foreach/find/match)

List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

        // 遍历输出符合条件的元素
        list.stream().forEach(System.out::println);
        // 匹配第一个
        Optional<Integer> findFirst = list.stream().findFirst();
        // 匹配任意(适用于并行流)
        Optional<Integer> findAny = list.parallelStream().findAny();
        // 是否包含符合特定条件的元素
        boolean anyMatch = list.stream().anyMatch(x -> x < 6);
        System.out.println("匹配第一个值:" + findFirst.get());
        System.out.println("匹配任意一个值:" + findAny.get());
        System.out.println("是否存在大于6的值:" + anyMatch);

3.2、筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

//需求:筛选员工中工资高于8000的人,并形成新的集合
List<Staff> staffList = new ArrayList<Staff>();
		staffList.add(new Staff("Tom", 8900, 23, "male", "New York"));
		staffList.add(new Staff("Jack", 7000, 25, "male", "Washington"));
		staffList.add(new Staff("Lily", 7800, 21, "female", "Washington"));
		staffList.add(new Staff("Anni", 8200, 24, "female", "New York"));
		staffList.add(new Staff("Owen", 9500, 25, "male", "New York"));
		staffList.add(new Staff("Alisa", 7900, 26, "female", "New York"));

		List<String> fiterList = staffList.stream().filter(x -> x.getSalary() > 8000).map(Staff::getName)
				.collect(Collectors.toList());
		System.out.print("高于8000的员工姓名:" + fiterList);

3.3、聚合(max/min/count)

Java stream中也引入了max、min、count这些用法,极大地方便了我们对集合、数组的数据统计工作。

//需求:获取员工工资最高的人
List<Staff> staffList= new ArrayList<Staff>();
		staffList.add(new Staff("Tom", 8900, 23, "male", "New York"));
		staffList.add(new Staff("Jack", 7000, 25, "male", "Washington"));
		staffList.add(new Staff("Lily", 7800, 21, "female", "Washington"));
		staffList.add(new Staff("Anni", 8200, 24, "female", "New York"));
		staffList.add(new Staff("Owen", 9500, 25, "male", "New York"));
		staffList.add(new Staff("Alisa", 7900, 26, "female", "New York"));

		Optional<Person> max = staffList.stream().max(Comparator.comparingInt(Staff::getSalary));
		System.out.println("员工工资最大值:" + max.get().getSalary());
//需求:获取Integer集合中的最大值
List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

		// 自然排序
		Optional<Integer> max = list.stream().max(Integer::compareTo);
		// 自定义排序
		Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
			@Override
			public int compare(Integer o1, Integer o2) {
				return o1.compareTo(o2);
			}
		});
		System.out.println("自然排序的最大值:" + max.get());
		System.out.println("自定义排序的最大值:" + max2.get());
//需求:获取String集合中最短的元素
List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");

		Optional<String> min = list.stream().min(Comparator.comparing(String::length));
		System.out.println("最长的字符串:" + min.get());
//需求:计算Integer集合中大于6的元素的个数
List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

		long count = list.stream().filter(x -> x > 6).count();
		System.out.println("list中大于6的元素个数:" + count);

3.4、映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:

  • map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
//需求:英文字符串数组的元素全部改为大写。整数数组每个元素+3
String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
		List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

		List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
		List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

		System.out.println("每个元素大写:" + strList);
		System.out.println("每个元素+3:" + intListNew);
//需求:将两个字符数组合并成一个新的字符数组
List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
		List<String> listNew = list.stream().flatMap(s -> {
			// 将每个元素转换成一个stream
			String[] split = s.split(",");
			Stream<String> s2 = Arrays.stream(split);
			return s2;
		}).collect(Collectors.toList());

		System.out.println("处理前的集合:" + list);
		System.out.println("处理后的集合:" + listNew);

3.5、归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
		// 求和方式1
		Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
		// 求和方式2
		Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
		// 求和方式3
		Integer sum3 = list.stream().reduce(0, Integer::sum);
		
		// 求乘积
		Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

		// 求最大值方式1
		Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
		// 求最大值写法2
		Integer max2 = list.stream().reduce(1, Integer::max);

		System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
		System.out.println("list求积:" + product.get());
		System.out.println("list求和:" + max.get() + "," + max2);

3.6、收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1、归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。

List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
		List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
		Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

		List<Staff> staffList = new ArrayList<Staff>();
		staffList.add(new Staff("Tom", 8900, 23, "male", "New York"));
		staffList.add(new Staff("Jack", 7000, 25, "male", "Washington"));
		staffList.add(new Staff("Lily", 7800, 21, "female", "Washington"));
		staffList.add(new Staff("Anni", 8200, 24, "female", "New York"));
		
		Map<?, Staff> map = staffList.stream().filter(p -> p.getSalary() > 8000)
				.collect(Collectors.toMap(Staff::getName, p -> p));
		System.out.println("toList:" + listNew);
		System.out.println("toSet:" + set);
		System.out.println("toMap:" + map);
3.6.2、统计(count/averaging)

Collectors提供了一系列用于数据统计的静态方法:

  • 计数:count
  • 平均值:averagingInt、averagingLong、averagingDouble
  • 最值:maxBy、minBy
  • 求和:summingInt、summingLong、summingDouble
  • 统计以上所有:summarizingInt、summarizingLong、summarizingDouble
List<Staff> staffList= new ArrayList<Staff>();
		staffList.add(new Staff("Tom", 8900, 23, "male", "New York"));
		staffList.add(new Staff("Jack", 7000, 25, "male", "Washington"));
		staffList.add(new Staff("Lily", 7800, 21, "female", "Washington"));

		// 求总数
		Long count = staffList.stream().collect(Collectors.counting());
		// 求平均工资
		Double average = staffList.stream().collect(Collectors.averagingDouble(Staff::getSalary));
		// 求最高工资
		Optional<Integer> max = staffList.stream().map(Staff::getSalary).collect(Collectors.maxBy(Integer::compare));
		// 求工资之和
		Integer sum = staffList.stream().collect(Collectors.summingInt(Staff::getSalary));
		// 一次性统计所有信息
		DoubleSummaryStatistics collect = staffList.stream().collect(Collectors.summarizingDouble(Staff::getSalary));

		System.out.println("员工总数:" + count);
		System.out.println("员工平均工资:" + average);
		System.out.println("员工工资总和:" + sum);
		System.out.println("员工工资所有统计:" + collect);

运行结果:

员工总数:3
员工平均工资:7900.0
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}
3.6.3、分组(partitioningBy/groupingBy)
  • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
  • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。
//需求:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
List<Staff> staffList= new ArrayList<Staff>();
		staffList.add(new Staff("Tom", 8900, "male", "New York"));
		staffList.add(new Staff("Jack", 7000, "male", "Washington"));
		staffList.add(new Staff("Lily", 7800, "female", "Washington"));
		staffList.add(new Staff("Anni", 8200, "female", "New York"));
		staffList.add(new Staff("Owen", 9500, "male", "New York"));
		staffList.add(new Staff("Alisa", 7900, "female", "New York"));

		// 将员工按薪资是否高于8000分组
        Map<Boolean, List<Staff>> part = staffList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
        // 将员工按性别分组
        Map<String, List<Staff>> group = staffList.stream().collect(Collectors.groupingBy(Staff::getSex));
        // 将员工先按性别分组,再按地区分组
        Map<String, Map<String, List<Staff>>> group2 = staffList.stream().collect(Collectors.groupingBy(Staff::getSex, Collectors.groupingBy(Staff::getArea)));
        System.out.println("员工按薪资是否大于8000分组情况:" + part);
        System.out.println("员工按性别分组情况:" + group);
        System.out.println("员工按性别、地区:" + group2);

运行结果:

员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}
3.6.4、接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

List<Staff> staffList= new ArrayList<Staff>();
		staffList.add(new Staff("Tom", 8900, 23, "male", "New York"));
		staffList.add(new Staff("Jack", 7000, 25, "male", "Washington"));
		staffList.add(new Staff("Lily", 7800, 21, "female", "Washington"));

		String names = staffList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
		System.out.println("所有员工的姓名:" + names);
		List<String> list = Arrays.asList("A", "B", "C");
		String string = list.stream().collect(Collectors.joining("-"));
		System.out.println("拼接后的字符串:" + string);

运行结果:

所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C
3.6.5、归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		// 每个员工减去起征点后的薪资之和
		Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
		System.out.println("员工扣税薪资总和:" + sum);

		// stream的reduce
		Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
		System.out.println("员工薪资总和:" + sum2.get());

运行结果:

员工扣税薪资总和:8700
员工薪资总和:23700

3.7、排序(sorted)

sorted,中间操作。有两种排序:

  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com):Comparator排序器自定义排序
//将员工按工资由高到低(工资一样则按年龄由大到小)排序
List<Person> personList = new ArrayList<Person>();

		personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
		personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
		personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 8800, 26, "male", "New York"));
		personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

		// 按工资升序排序(自然排序)
		List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
				.collect(Collectors.toList());
		// 按工资倒序排序
		List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
				.map(Person::getName).collect(Collectors.toList());
		// 先按工资再按年龄升序排序
		List<String> newList3 = personList.stream()
				.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
				.collect(Collectors.toList());
		// 先按工资再按年龄自定义排序(降序)
		List<String> newList4 = personList.stream().sorted((p1, p2) -> {
			if (p1.getSalary() == p2.getSalary()) {
				return p2.getAge() - p1.getAge();
			} else {
				return p2.getSalary() - p1.getSalary();
			}
		}).map(Person::getName).collect(Collectors.toList());

		System.out.println("按工资升序排序:" + newList);
		System.out.println("按工资降序排序:" + newList2);
		System.out.println("先按工资再按年龄升序排序:" + newList3);
		System.out.println("先按工资再按年龄自定义降序排序:" + newList4);

运行结果:

按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]

3.8、提取/组合

流也可以进行合并、去重、限制、跳过等操作。

String[] arr1 = { "a", "b", "c", "d" };
		String[] arr2 = { "d", "e", "f", "g" };

		Stream<String> stream1 = Stream.of(arr1);
		Stream<String> stream2 = Stream.of(arr2);
		// concat:合并两个流 distinct:去重
		List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
		// limit:限制从流中获得前n个数据
		List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
		// skip:跳过前n个数据
		List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

		System.out.println("流合并:" + newList);
		System.out.println("limit:" + collect);
		System.out.println("skip:" + collect2);

运行结果:

流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值