自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 特征提取算法——HOG (Histogram of Gradient)方向梯度直方图学习笔记

今天介绍一种图像特征提取算法:HOG(Histogram of Gradient)方向梯度直方图HOG+SVM广泛运用与行人检测,在CVPR2005这篇文章中,实施HOG算法一共有5个步骤。1. 伽马/颜色标准化(Gamma/Colour Normalization)第一步应对图像进行伽马矫正和颜色空间标准化的预处理,此步的目的是为了减少光照的影响。颜色空间标准化中,Dalal等人的论文中分别使用了RGB,LAB和灰度等颜色空间对图像进行预处理,但对最终结果影响并不大,灰度图像有微弱优势,所

2021-07-17 07:51:36 1891 1

原创 字体生成GAN(GlyphGAN)学习笔记

最近一直在看GAN的论文,学校事情很多就不一一做笔记了。今天看到了一个很有趣的字体生成GAN,简单说一说,但很遗憾GlyphGAN只用来生成英文字母。GAN字体生成也有很过相关研究,包括最早的基于实例的方法,神经字体风格转换(Neural font style transfer),贝叶斯程序学习(Bayesian program learning),和最近大火的GAN(对抗生成网络)包括zi2zi,AC-GAN,domain transfer network,U-NET 生成器的变体和与LSTM结合

2021-02-25 11:42:19 1608 1

原创 SA-GAN(Self-Attention GAN)学习笔记

在做text2image GAN时候做文献阅读时看到的SAGAN,这里做一个简要得学习笔记,欢迎纠错讨论。Self-Attention Generative Adversarial Networks (SAGAN)SAGAN在ImageNet可到达36.8的Inception Score 和 18.65的Frechet Inception Distance。也是BIG-GAN的原型。传统卷积GAN问题:受局部感受野限制(Local Receptive Field),无法提取全局信息,只能提取

2021-02-21 01:14:45 3891 9

原创 特征提取算法——BRISK(Binary Robust Invariant Scalable Kepoints)学习笔记

今天介绍一种特征提取算法:BRISK(Binary Robust Invariant Scalable Kepoints)BRISK是Stefan等人在ICCV11上发表的。通过对原论文进行泛读后,对该算法有了一定的了解。原论文地址如下:https://www.researchgate.net/profile/Roland_Siegwart/publication/221110715_BRISK_Binary_Robust_invariant_scalable_keypoints/links/0

2021-01-02 06:50:11 2183

原创 图像插值算法——双立方(三次)卷积插值

双立方(三次)卷积插值是一种数据点插值方法。在对图像进行缩放,旋转等处理时,有些像素点会因为这些操作变得没有意义,比如二维图像A(2*2)放大为原来的二倍后B(4*4)就会缺失一些像素,如图所示: 图中白色区域就应进行插值操作。对比双线性插值和最近邻插值,双立方(三次)卷积插值具有更平滑的插值效果,但速度更慢,本文将对他进行介绍。原论文地址:http://ncorr.com/download/publications/keysbicubic.pd...

2020-12-30 08:18:46 10394 2

原创 梯度和梯度算子(Roberts,Sobel,Laplace)

机器学习和深度学习中,梯度是一个很重要的概念。在大部分机器学习优化问题中都可以通过梯度下降法处理。要介绍梯度就必须了解导数(derivative),偏导数(partial derivative)和方向导数(directional derivative)。这些概念在高等数学中都有介绍,也可以参考百度和维基百科,这里我们就只做简单回忆:导数导数反映函数在某点处沿x轴正方向的变化率,可以理解为,如果某点导数大于0,则该点沿x轴正方向递增,如果某点小于0,则递减。偏导数导数和偏导数性质一致,但偏导数

2020-12-27 09:31:52 39319 3

原创 伽马矫正(Gamma correction)

伽马矫正(Gammacorrection)在学习HOG描述子时,对图像进行预处理中使用了伽马矫正这个方法,这里对伽马矫正进行简要的介绍。伽马矫正也称幂律变换,一般用于平滑的扩展暗调的细节。进行伽马矫正的原因是因为人类的眼睛在感知光线时,眼睛对亮度的感知遵循近似的幂函数(如下图所示)而不是线性函数。计算机系统中,由于显示器或显卡的原因会出现实际输出图像有亮度偏差。在第一次进入一些游戏时,想必大家都经历过调节屏幕亮度参数直至能看清底部图片的操作吧,这也伽马矫正的一种。从图像中可以看出,当输.

2020-12-22 09:49:24 10859 1

原创 数字图像处理-图像滤波(1)-均值滤波

图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作。在进行图像算法前,对图像进行滤波预处理往往会带来更好的效果。大家在用美图秀秀美颜皮肤时是否想过其中的工作原理,或者在Photoshop中是否使用过模糊这个功能?这其中都应用到了图像滤波的原理。图像滤波原理很简单,掌握了其中的卷积操作,也会对卷积神经网络的学习有一定帮助。滤波有很多类型,包括线性滤波和非线性滤波,今天主要介绍线性滤波中的均值滤波。均值滤波(Mean filter)先看一组滤波前

2020-11-17 11:31:43 18676

原创 特征提取算法——LBP(Local Binary Pattern)局部二值模式学习笔记

在上Computer Vision lecture的时候,讲师介绍了LBP算子,这里对他进行简单的介绍。LBP(Local Binary Pattern) 局部二制模式,是描述图像局部纹理特征的算子,有原始LBP,圆形LBP算子,旋转不变的LBP模式和LBP均匀模式。1. 原始的LBP原始LBP很好理解,是通过以中心像素为阈值对比中心像素和周围8个像素的值,周围像素比中心像素大(或相等的)的记为1,小的记为0,通过对比会得到二值图,按顺时针方向可得二进制串,再通过二进制转换为十进制数,即得到中心

2020-11-16 04:21:43 3136

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除