Pandas学习笔记05-分组统计与数据透视表


对数据集进行分类,并在每组数据上进行聚合操作,是非常常见的数据处理,类似excel里的分组统计或数据透视表功能。
pandas提供了比较灵活的groupby分组接口,同时我们也可以使用pivot_table进行透视处理。

1.分组

分组函数groupby,对某列数据进行分组,返回一个Groupby对象。
分组
在进行groupby分组后,我们可以对分组对象进行各种操作,比如求分组平均值mean()
分组统计
很多时候,我们需要返回dataframe型数据进行二次操作
获取datafram数据
size()方法可以获取各分组的大小
获取分组大小

遍历分组
遍历分组
[[]]和[]在返回结果上的区别
自由选择返回结果类型
有时候,我们可以通过传递函数进行分组,简化代码
使用函数进行分组

2.聚合

常见的聚合函数如下:

功能描述
mean()计算组的平均值
sum()计算组值之和
size()计算组大小
count()计算组计数
std()组的标准偏差
var()计算组的方差
sem()均值的标准误
describe()生成描述性统计
first()计算组值的第一个
last()计算组值的最后一个
nth()取第n个值,如果n是一个列表,则取一个子集
min()计算组值的最小值
max()计算组值的最大值

演示数据
简单的分组聚合操作
分组聚合
同时使用多种聚合方法
同时使用多种聚合方法
对聚合结果列进行命令
对聚合结果列命名
对不同的列进行不同的聚合方法
不同的聚合方法

3.数据透视

数据透视采用pivot_table方法,和excel数据透视表功能类似,其实可以和groupby分组统计进行相互转化

它带有许多参数:
data:一个DataFrame对象。
values:要汇总的一列或一列列表。
index:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表索引上进行分组的键。如果传递了数组,则其使用方式与列值相同。
columns:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表列上进行分组的键。如果传递了数组,则其使用方式与列值相同。
aggfunc:用于汇总的函数,默认为numpy.mean。

演示数据
数据透视操作
简单的数据透视对不同列使用不同的方法
对不同列使用不同方法
margins增加合计项
合计项

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页