机器学习(一)----k-近邻算法

一 、K-近邻算法(KNN)概述 

    最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。

     KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

     下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

 

由此也说明了KNN算法的结果很大程度取决于K的选择。

     在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:

                      

同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。

   接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。


二、python实现

建立kNN算法进行验证

#-------------------------1 准备数据-------------------------------
#可以采用公开的数据集,也可以利用网络爬虫从网站上抽取数据,方式不限
#-------------------------2 准备数据-------------------------------
#确保数据格式符合要求
#导入科学计算包(数组和矩阵)
from numpy import *
from os import listdir
#导入运算符模块
import operator

#创建符合python格式的数据集
def createDataSet():
    #数据集 list(列表形式)
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    #标签
    labels=['A','A','B','B']
    return group, labels
#-------------------------构建分类器-------------------------------
#KNN算法实施
#@inX  测试样本数据
#@dataSet  训练样本数据
#@labels  测试样本标签
#@k  选取距离最近的k个点
def classify0(inX,dataSet,labels,k):
    #获取训练数据集的行数
    dataSetSize=dataSet.shape[0]
    #---------------欧氏距离计算-----------------
    #各个函数均是以矩阵形式保存
    #tile():inX沿各个维度的复制次数
    diffMat=tile(inX,(dataSetSize,1))-dataSet
    sqDiffMat=diffMat**2
    #.sum()运行加函数,参数axis=1表示矩阵每一行的各个值相加和
    sqDistances=sqDiffMat.sum(axis=1)
    distances=sqDistances**0.5
    #--------------------------------------------
    #获取排序(有小到大)后的距离值的索引(序号)
    sortedDistIndicies=distances.argsort()
    #字典,键值对,结构类似于hash表
    classCount={}
    for i in range(k):
        #获取该索引对应的训练样本的标签
        voteIlabel=labels[sortedDistIndicies[i]]
        #累加几类标签出现的次数,构成键值对key/values并存于classCount中
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #将字典列表中按照第二列,也就是次数标签,反序排序(由大到小排序)
    sortedClassCount=sorted(classCount.items(),
     key=operator.itemgetter(1),reverse=True)
    #返回第一个元素(最高频率)标签key
    return sortedClassCount[0][0]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值