- 博客(287)
- 资源 (6)
- 问答 (1)
- 收藏
- 关注
原创 机器的眼睛:漫谈机器视觉(文末送书)
眼睛是人心灵的窗户,我们可以通过凝视对方的眼神来理解他人。当有一天你走过一道需要刷脸才能通过的大门,突然间看到一个冰冷的摄像头在凝视着你的时候,你是否也曾若有所思地看着它,心中充满了疑惑——它是如何工作的?我每天的穿着打扮如此不同,它究竟是怎么认识我的?它有记忆吗?会思考吗?如果要评选人类身上最精巧的器官,那么眼睛一定会在候选名单之中。视觉能够给我们的生活带来极其丰富的体验,比如坐在海边一座安静的小屋门口,悠闲地看潮涨潮落,离不开视觉;
2023-06-06 14:16:44
1056
13
原创 Python实现KNN算法(附源码)
本篇我们将讨论一种广泛使用的分类技术,称为k邻近算法,或者说K最近邻(KNN,k-Nearest Neighbor)。所谓K最近邻,是k个最近的邻居的意思,即每个样本都可以用它最接近的k个邻居来代表。01、KNN算法思想如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法在类别决策时,只与极少量的相邻样本有关。
2023-05-31 14:26:47
266
9
原创 Python进阶 │反爬虫和怎样反反爬虫
爬虫、反爬虫和反反爬虫是网络爬虫工作过程中一直伴随的问题。在现实生活中,网络爬虫的程序并不像之前介绍的爬取博客那么简单,运行效果不如意者十有八九。首先需要理解一下“反爬虫”这个概念,其实就是“反对爬虫”。根据网络上的定义,网络爬虫为使用任何技术手段批量获取网站信息的一种方式。“反爬虫”就是使用任何技术手段阻止批量获取网站信息的一种方式。01、为什么会被反爬虫对于一个经常使用爬虫程序获取网页数据的人来说,遇到网站的“反爬虫”是司空见惯的。那么,网站为什么要“反爬虫”呢?
2023-05-29 14:46:45
2236
89
原创 机器学习之机器如何学习
关于这种艺术作品还有一些需要讲解的地方: 它不是计算机在画布上的基本图像上随机画出来的,事实上,该系统是在世界上最大的图像数据集上进行训练的,它包含超过1000个类别的100多万张图像。例如,在生成的第二张图像中,你可能会在我的眼睛和嘴巴周围看到一些类似狗或其他动物的特征,这是因为在生成本艺术作品之前,这个系统的数据集中有很多动物。现在你可以拍一些照片,可以是你的宠物、电脑、电视或你自己,或者你可以从网上下载一张照片,将它们放在与你刚刚编写的Julia代码文件相同的目录中,然后运行该代码。
2023-05-25 08:37:51
1345
1
原创 移动机器人 | 火星探矿机器人
为了简化设计,聚焦于Agent的构造和实现,“火星探矿机器人”案例中的环境被设计为一个M×M的网格,每个网格单元代表了一个地理位置,不同网格单元具有不同的地形信息,可能存在影响机器人移动的障碍物,火星矿产非均匀地分布在网格单元格中。其中,position是一个类型为Coordinate的属性,它定义了Agent机器人在网格中的坐标;①每个机器人存储矿产的容量都有一定的限度,即机器人内部只有有限的空间存放矿产,一旦机器人采集的矿产超出其存储容量,它必须将这些矿产卸载到特定的位置区域,以便能够再次采集矿产。
2023-05-22 15:26:28
905
43
原创 秒懂算法 | KMP算法(Java描述)
Knuth-Morris-Pratt 算法(简称 KMP)是由高德纳(Donald Ervin Knuth)和沃恩·普拉特在1974年构思,同年詹姆斯·H·莫里斯也独立地设计出该算法,最终三人于1977年联合发表。该算法较Brute-Force算法有较大改进,主要是消除了目标串指针的回溯,从而使算法效率有了某种程度的提高。
2023-05-19 17:03:30
942
11
原创 秒懂算法 | 共识算法之Raft算法模拟数
在当前场景中,成员A提交了索引为1的日志项,成员B、C仅仅拥有索引为1的日志项的所有信息但并未提交。存在A、B、C三个成员组成的Raft集群,刚启动时,每个成员都处于Follower状态,其中,成员A心跳超时为110ms,成员B心跳超时为150ms,成员C心跳超时为130ms,其他相关信息如图1所示。很明显,成员B、C的term小于成员A的term,也不存在比成员A日志索引更大的日志索引,并且term为1的选票还没有投给其他成员,因此成员B、C将term为1的选票投给成员A并更新自己的term为1。
2023-05-18 09:23:25
1082
75
原创 人工智能算法|K均值聚类算法Python实现
现在假设有9个坐标点数据,它们分别是(3,2)、(3,9)(8,6)(9,5)(2,4)(3,10)(2,5)(9,6)(2,2)。(4)整理好的数据集和随机选取的质心会作为参数,交给函数minDistance进行聚类迭代计算。(2)安装完成后,可以根据实际情况改变数据集文件的地址,数据集是由loadDataSet这个函数进行数据的加载和整理的。个类,且每个类有一个聚类中心,即质心,每个类的质心是根据类中所有值的均值得到。从图2可以看出,第4次迭代与第三次迭代的结果是相同的,因此迭代4次后,程序终止执行。
2023-05-17 09:14:09
987
24
原创 高效学习传感器|霍尔式传感器
霍尔式传感器的物理基础是霍尔效应。如图1所示,在一块长度为l、宽度为b、厚度为d的长方体导电板上,左、右、前、后侧面都安装上电极。在长度方向上通入电流I,在厚度方向施加磁感应强度为B的磁场。■ 图1 霍尔效应示意图导电板中的自由电子沿电流反方向作定向移动,平均速度为v。在磁场的作用下,电子受到洛伦兹力的作用。每个电子受到洛伦兹力fL的大小为其中,e是一个电子的电荷量,e=1.6×10-19C。根据左手定则,可以判断出洛伦兹力fL的方向由外向里。电子除了作定向移动外,还在洛伦兹力的作用下向里飘移,结果在导电
2023-05-12 10:55:04
1185
18
原创 机器学习案例 | 通过EBG学习概念cup
基于解释的学习(explanation-basedlearning)可简称为解释学习,是20世纪80年代中期开始兴起的一种机器学习方法。解释学习根据任务所在领域知识和正在学习的概念知识,对当前实例进行分析和求解,得出一个表征求解过程的因果解释树,以获取新的知识。在获取新知识的过程中,通过对属性、表征现象和内在关系等进行解释而学习到新的知识。
2023-05-08 11:49:40
3949
144
原创 网络安全 | Linux ELF病毒实例
本节将编写一个病毒原型,本病毒原型主要由C语言编写,少部分无法由C语言来完成的底层操作采取GCC内嵌汇编的方式实现。
2023-05-05 09:05:18
3097
70
原创 人工智能实践: 基于T-S 模型的模糊推理
模糊推理是一种基于行为的仿生推理方法, 主要用来解决带有模糊现象的复杂推理问题。由于模糊现象的普遍存在, 模糊推理系统被广泛的应用。模糊推理系统主要由模糊化、模糊规则库、模糊推理方法以及去模糊化组成, 其基本流程如图1所示。■ 图1 模糊推理流程图传统的模糊推理是一种基于规则的控制, 它通过语言表达的模糊性控制规则实现对难以精确描述系统的控制, 在设计中不需要建立被控对象的精确数学模型。T-S 模糊推理模型是将正常的模糊推理规则及其推理转换成一种数学表达形式。
2023-04-27 09:51:13
3767
50
原创 PyTorch深度学习实战 | 基于深度学习的电影票房预测研究
基于深度学习的映前票房预测模型(Cross&Dense网络结构模型),该模型通过影片基本信息如:电影类型、影片制式、档期和电影的主创阵容和IP特征等信息对上映影片的票房进行预测。本篇采用451部电影作为训练模型,最后再在194部影片上进行测试,模型的绝对精度为55%,相对精度为92%。该模型在使用相同的特征的情况下好于SVM、随机森林等算法。上升了至少5%。
2023-04-24 17:36:30
2052
92
原创 PyTorch深度学习实战 | 高斯混合模型聚类原理分析
01、问题描述为理解高斯混合模型解决聚类问题的原理,本实例采用三个一元高斯函数混合构成原始数据,再采用GMM来聚类。1) 数据三个一元高斯组件函数可以采用均值和协方差表示如表1所示:▍表1 三个一元高斯组件函数的均值和协方差每个高斯组件函数分配不同的权重,其中1号组件权重为30%, 2号组件权重为50%,3号组件权重为20%,随机生成1000个样本数据。2) 可视化为了理解三个高斯组件函数是如何混合的,可以将三个一元高斯函数显示在二维坐标中,显示三个高斯组件函数的钟形图。
2023-04-21 10:14:44
7712
107
原创 高效学习传感器|生物传感器
制作、使用生物传感器的过程为:首先,提取出动植物发挥感知作用的生物材料,包括生物组织、微生物、细胞器、酶、抗体、抗原、核酸、DNA等,实现生物材料或类生物材料的批量生产,反复利用,降低检测的难度和成本;其次,将生物材料感受到的持续、有规律的信息,转换为人们可以理解的信息;用固定化的生物敏感材料(如酶、蛋白质、DNA、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)作为识别元件,采用适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等)及信号放大器作为分析工具所构成的检测系统,就是生物传感器。
2023-04-13 08:26:20
1120
60
原创 PyTorch深度学习实战 | 基于线性回归、决策树和SVM进行鸢尾花分类
鸢尾花数据集是机器学习领域非常经典的一个分类任务数据集。它的英文名称为Iris Data Set,使用sklearn库可以直接下载并导入该数据集。数据集总共包含150行数据,每一行数据由4个特征值及一个标签组成。标签为三种不同类别的鸢尾花,分别为:Iris Setosa,Iris Versicolour,Iris Virginica。对于多分类任务,有较多机器学习的算法可以支持。本文将使用决策树、线性回归、SVM等多种算法来完成这一任务,并对不同方法进行比较。
2023-04-10 10:21:43
1959
37
原创 PyTorch深度学习实战 | 基于多层感知机模型和随机森林模型的某地房价预测
简介:在现实生活中,除了分类问题外,也存在很多需要预测出具体值的回归问题,例如年龄预测、房价预测、股价预测等。相比分类问题而言,回归问题输出类型为一个连续值,如下表所示为两者的区别。在本文中,将完成房价预测这一回归问题。■ 分类问题与回归问题区别对于一个回归问题,从简单到复杂,可以采取的模型有多层感知机、SVR、回归森林算法等,下面将介绍如何使用这些算法完成这一任务。
2023-04-06 16:07:13
2127
83
原创 PyTorch深度学习实战 | 迁移学习与自然语言处理实践
因此,使用刚刚用验证集训练得到的模型,通过predict.py来预测验证集,人工检验预测的结果是否有效,这样子就能保证我们整体的单模流程完全没问题了。为此,我们对BERT进行了改写,将BERT的12层transformer生成的表示赋予一个权重,权重的初始化如式(1)所示,而后通过训练来确定权重值,并将每一层生成的表示加权平均,再通过一层全连接层降维至512维如式(2)所示,最后结合之前的IDCNN-CRF和BILSTM-CRF模型来获得多种异构单模。该模型的精度与BERT-BILSTM-CRF相当。
2023-04-04 08:47:42
713
67
原创 PyTorch深度学习实战 | 预测工资——线性回归
通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。
2023-04-03 08:58:10
1379
39
原创 PyTorch深度学习实战 | 典型卷积神经网络
在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产都起到了巨大的促进作用,如VGG、ResNet、Inception和DenseNet等,很多投入实用的卷积神经都是在它们的基础上进行改进的。初学者应从试验开始,通过阅读论文和实现代码(tensorflow.keras.applications包中实现了很多有影响力的神经网络模型的源代码)来全面了解它们。下文简要讨论两个有代表性的卷积神经网络,它们都是卷积层、池化层、全连接层等的不同组合。
2023-03-29 13:11:53
1601
16
原创 PyTorch 深度学习实战 | 基于生成式对抗网络生成动漫人物
生成式对抗网络(Generative Adversarial Network, GAN)是近些年计算机视觉领域非常常见的一类方法,其强大的从已有数据集中生成新数据的能力令人惊叹,甚至连人眼都无法进行分辨。本文将会介绍基于最原始的DCGAN的动漫人物生成任务,通过定义生成器和判别器,并让这两个网络在参数优化过程中不断“打架”,最终得到较好的生成结果。
2023-03-27 14:57:02
1729
57
原创 PyTorch 深度学习实战 | 知识图谱嵌入结合图路径的推荐 RippleNet
本篇文章介绍KGE与图路径结合的知识图谱推荐算法,而RippLeNet在这一类的推荐算法中是最为典型且效果也非常优秀的。
2023-03-26 10:00:00
428
18
原创 PyTorch 深度学习实战 | 基于 ResNet 的花卉图片分类
本期将提供一个利用深度学习进行花卉图片分类的案例,并使用迁移学习的方法解决训练数据较少的问题。图片分类是根据图像的语义信息对不同的图片进行区分,是计算机视觉中的基本问题,也是图像检测、图像分割、物体跟踪等高阶视觉任务的基础。在深度学习领域,图片分类的任务一般基于卷积神经网络来完成,如常见的卷积神经网络有 VGG、GoogleNet、ResNet 等。而在图像分类领域,数据标记是最基础和烦琐的工作。有时由于条件限制,往往得不到很多经过标记的、用于训练的图片,其中一个解决办法就是对已经预训练好的模型进行迁移学习
2023-03-22 13:32:52
1447
7
原创 PyTorch 深度学习实战 |用 TensorFlow 训练神经网络
为了更好地理解神经网络如何解决现实世界中的问题,同时也为了熟悉 TensorFlow 的 API,本篇我们将会做一个有关如何训练神经网络的练习,并以此为例,训练一个类似的神经网络。
2023-03-21 10:47:07
1418
39
原创 PyTorch深度学习实战 | 神经网络的优化难题
即使我们可以利用反向传播来进行优化,但是训练过程中仍然会出现一系列的问题,比如鞍点、病态条件、梯度消失和梯度爆炸,对此我们首先提出了小批量随机梯度下降,并且基于批量随机梯度下降的不稳定的特点,继续对其做出方向和学习率上的优化。
2023-03-20 08:58:54
1503
65
原创 PyTorch深度学习实战 | 基于YOLO V3的安全帽佩戴检测
本期将提供一个利用深度学习检测是否佩戴安全帽的案例,从而展示计算机视觉中的目标识别问题的一般流程。目标检测是基于图片分类的计算机视觉任务,既包含了分类,又包含了定位。给出一张图片,目标检测系统要能够识别出图片的目标并给出其位置。由于图片中目标数是不确定的,且要给出目标的精确位置,目标检测相比分类任务更复杂,所以也有更多的使用场景,如无人驾驶、智慧安防、工业安全、医学图像等方面。而本案例就是工业安全领域的一个应用,也可移植到其他的目标检测任务。
2023-03-18 14:25:04
1022
23
原创 PyTorch深度学习实战 | 基于ResNet的人脸关键点检测
人脸关键点检测指的是用于标定人脸五官和轮廓位置的一系列特征点的检测,是对于人脸形状的稀疏表示。关键点的精确定位可以为后续应用提供十分丰富的信息。因此,人脸关键点检测是人脸分析领域的基础技术之一。许多应用场景(如人脸识别、人脸三维重塑、表情分析等)均将人脸关键点检测作为其前序步骤来实现。本文将通过深度学习的方法来搭建一个人脸关键点检测模型。
2023-03-17 08:31:51
1882
17
原创 PyTorch深度学习实战 | 基于RNN的文本分类
PyTorch是当前主流深度学习框架之一,其设计追求最少的封装、最直观的设计,其简洁优美的特性使得PyTorch代码更易理解,对新手非常友好。本文为实战篇,介绍基于RNN的文本分类
2023-03-16 08:21:51
838
65
原创 PyTorch深度学习实战 | 搭建卷积神经网络进行图像分类与图像风格迁移
PyTorch是当前主流深度学习框架之一,其设计追求最少的封装、最直观的设计,其简洁优美的特性使得PyTorch代码更易理解,对新手非常友好。本文为实战篇,介绍搭建卷积神经网络进行图像分类与图像风格迁移。
2023-03-15 08:32:17
891
19
原创 PyTorch深度学习实战 | 自然语言处理与强化学习
PyTorch是当前主流深度学习框架之一,其设计追求最少的封装、最直观的设计,其简洁优美的特性使得PyTorch代码更易理解,对新手非常友好。本文主要介绍深度学习领域中自然语言处理与强化学习部分。
2023-03-13 09:13:04
1670
79
原创 PyTorch深度学习实战 | 计算机视觉
深度学习领域技术的飞速发展,给人们的生活带来了很大改变。例如,智能语音助手能够与人类无障碍地沟通,甚至在视频通话时可以提供实时翻译;将手机摄像头聚焦在某个物体上,该物体的相关信息就会被迅速地反馈给使用者;在购物网站上浏览商品时,机器也在同时分析着用户的偏好,并及时个性化地推荐用户可能感兴趣的商品。原先以为只有人类才能做到的事,现在机器也能毫无差错地完成,甚至超越人类,这显然与深度学习的发展密不可分,技术正引领人类社会走向崭新的世界。
2023-03-10 09:34:34
1236
27
原创 高效学 C++|组合类的构造函数
设计好MyString类后,就可以像使用普通类型一样使用它了。例如,类的对象可以像普通的变量一样作为另一个类的数据成员。
2023-03-09 13:19:19
547
45
原创 秒懂算法 | DP概述和常见DP面试题
动态(DP)是一种算法技术,它将大问题分解为更简单的子问题,对整体问题的最优解决方案取决于子问题的最优解决方案。本篇内容介绍了DP的概念和基本操作;DP的设计、方程推导、记忆化编码、递推编码、滚动数组以及常见的DP面试题。
2023-03-08 14:03:43
226
21
原创 秒懂算法 | 基于主成分分析法、随机森林算法和SVM算法的人脸识别问题
本文的任务与手写数字识别非常相似,都是基于图片的多分类任务,也都是有监督的。
2023-03-06 09:11:09
1375
38
基于博图V15.1的程序加密程序
2023-04-20
使用回溯算法设计迷宫程序
2023-03-21
用栈、回溯算法设计迷宫程序
2023-03-21
Fashion MNIST图片重建实战
2023-03-21
使用Flutter小部件跨平台开发移动端App组件
2023-03-21
Java 15新增类Record的工作实例
2023-03-21
Android GPRS的基本应用
2023-03-21
全球知名的Zoom视频会议软件
2023-03-14
西门子博图软件授权软件
2023-03-14
台达PLC编程工具WPLSoft
2022-10-22
.net C# CAD二次开发,实现CAD自动绘图功能
2022-03-29
.net开发 .net移植 CAD开发者必备
2022-03-25
.net开发 中望CAD二次开发 技术文档
2022-03-25
农牧养殖(生猪养殖)产业研究
2022-03-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人