236. 二叉树的最近公共祖先

本文介绍了一种解决二叉树中寻找两个指定节点最近公共祖先(LCA)问题的算法。通过递归策略,对以root为根的树进行查找,当找到目标节点时返回,最终确定LCA。文章提供了具体示例,展示了算法的有效性和实现过程。
摘要由CSDN通过智能技术生成

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树:  root = [3,5,1,6,2,0,8,null,null,7,4]

 

示例 1:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

 

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉树中。

解题思路:

注意p,q必然存在树内, 且所有节点的值唯一!!!
        递归思想, 对以root为根的(子)树进行查找p和q, 如果root == null || p || q 直接返回root
        表示对于当前树的查找已经完毕, 否则对左右子树进行查找, 根据左右子树的返回值判断:
        1. 左右子树的返回值都不为null, 由于值唯一左右子树的返回值就是p和q, 此时root为LCA
        2. 如果左右子树返回值只有一个不为null, 说明只有p和q存在与左或右子树中, 最先找到的那个节点为LCA
        3. 左右子树返回值均为null, p和q均不在树中, 返回null

 

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root==null){
            return root;
        }
        if(root ==p || root==q){
            return root;
        }
        TreeNode left=lowestCommonAncestor(root.left,p,q);
        TreeNode right=lowestCommonAncestor(root.right,p,q);
        if(left!=null && right!=null){
            return root;
        }else if(left!=null){
            return left;
        }else if(right!=null){
            return right;
        }
        return null;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值