poj3235 Fence Repair

Fence Repair
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 24394 Accepted: 7813

Description

Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000) planks of wood, each having some integer length Li (1 ≤ Li ≤ 50,000) units. He then purchases a single long board just long enough to saw into the N planks (i.e., whose length is the sum of the lengths Li). FJ is ignoring the "kerf", the extra length lost to sawdust when a sawcut is made; you should ignore it, too.

FJ sadly realizes that he doesn't own a saw with which to cut the wood, so he mosies over to Farmer Don's Farm with this long board and politely asks if he may borrow a saw.

Farmer Don, a closet capitalist, doesn't lend FJ a saw but instead offers to charge Farmer John for each of the N-1 cuts in the plank. The charge to cut a piece of wood is exactly equal to its length. Cutting a plank of length 21 costs 21 cents.

Farmer Don then lets Farmer John decide the order and locations to cut the plank. Help Farmer John determine the minimum amount of money he can spend to create the N planks. FJ knows that he can cut the board in various different orders which will result in different charges since the resulting intermediate planks are of different lengths.

Input

Line 1: One integer  N, the number of planks 
Lines 2.. N+1: Each line contains a single integer describing the length of a needed plank

Output

Line 1: One integer: the minimum amount of money he must spend to make  N-1 cuts

Sample Input

3
8
5
8

Sample Output

34

Hint

He wants to cut a board of length 21 into pieces of lengths 8, 5, and 8. 
The original board measures 8+5+8=21. The first cut will cost 21, and should be used to cut the board into pieces measuring 13 and 8. The second cut will cost 13, and should be used to cut the 13 into 8 and 5. This would cost 21+13=34. If the 21 was cut into 16 and 5 instead, the second cut would cost 16 for a total of 37 (which is more than 34).

Source



将一块木板分割为若干块,每次分割成本为两块的和,比如一块8米的木板分成1+1+6,那么首先可以分成1+7,此时成本为8,然后将7分割为1+6,此时成本为7,所以总成本外15。当然亦可以6+1+1,此时成本为8+2=10.题目求最少的分割成本。

这里只需要先分大块,再分小块可以使成本最低。

开始我写的代码就是每次进行排序sort,但是超时了。
#include <iostream>
#include <algorithm>

using namespace std;

int N;
long long ans = 0;
int w[20005];


int main ()
{
    cin >> N;
    for (int i = 1;i <= N;i++)
    {
        cin >> w[i];
    }
    if (N==1)
    {
        cout << w[1] << endl;
    }
    else
    {
        sort(w+1,w+1+N);
        for (int i = 1;i <= N - 1;i++)
        {
            w[i+1] += w[i];
            ans += w[i+1];
            sort(w+i+1,w+N+1);
        }
        cout << ans << endl;
    }

}



然后改进代码,每次舍去一个数字,然后查找出数组中最小和次小的木板(这里需要注意的是,每次最小的木板和次小的木板可能会发生变化,所以这就是为什么上边的代码每次有必要的经过排序)然后经过交换,使数目N减一。
然后就AC了。但是实测好像这个的执行时间更长一些,真不知道该是那个超时。你可以留言帮我分析一下时间复杂度。

以下AC代码:
#include <iostream>
#include <algorithm>
using namespace std;

int N;
long long ans = 0;
int w[20005];


int main ()
{
    cin >> N;
    for (int i = 1;i <= N;i++)
    {
        cin >> w[i];
    }


    while(N > 1)
    {
        int min = 1,minn = 2;
        if (w[min] > w[minn]) swap(min , minn);

        for (int i = 3;i <= N;i++)
        {
            if (w[i] < w[min])
            {
                minn = min;
                min = i;
            }
            else if (w[i] < w[minn])
                minn = i;
        }
        int t = w[min] + w[minn];

        ans += t;

        if (min == N) swap(min,minn);
        w[min] = t;
        w[minn] = w[N];
        N--;

    }
    cout << ans << endl;




}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值