题目
1.描述
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
2. 示例
输入:[[10,16], [2,8], [1,6], [7,12]]
输出:2
解释:对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。
3. 思路
与题目435求不重叠区间个数十分类似. 但要注意的是, 如[1, 2]
和 [2, 3]
在本题中算是重叠区间,重叠区间仅需一只箭。
- 本题使用贪心算法, 首先对xend升序方式对区间进行排序, 弓箭数量res初始置为1, xend初始置为第一个区间的xend
- 若下一区间的xstart<=xend, 说明区间重叠, 不需要增加弓箭数量
- 若下一区间xstart>xend, 说明区间不重叠, 需增加弓箭数量(res+1), 并更新xend为当前区间的xend
4. 代码
public int findMinArrowShots(int[][] points) {
if (points.length == 0)
return 0;
Arrays.sort(points, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[1] - o2[1];
}
});
int res = 1, end = points[0][1];
for (int i = 0; i < points.length; i++) {
if (end >= points[i][0])
continue;
res++;
end = points[i][1];
}
return res;
}