深度学习复试项目
学习笔记
「已注销」
这个作者很懒,什么都没留下…
展开
-
多层神经网络
专业名词:Fully Connected Network、多层感知机、Gradient Descent。欠拟合(后果:不贴合当前值)与过拟合(后果:界外预测不准):层数与参数不一定越多或越少更好,适当。梯度回传过程:从结尾出发,拿真实值依次算loss更新权重。与矩阵的关系 eg. Linear(4,3)的部分。深度学习在一些简单问题上不太行 eg.判断偶函数。激活函数:使预测的函数或者模型更加多样化,key word:参数与深度,激活函数。梯度下降(前向过程,梯度回传过程)原创 2024-03-22 23:20:59 · 125 阅读 · 0 评论 -
机器学习与深度学习初步了解
loss函数:L(w, b) :l= |Y(预测值) - y(真实值)| = | xw+b - y| L(w,b)=优化二次:𝑤2 ← 𝑤1 − 𝜂 𝜕𝐿/𝜕𝑤 |𝑤=𝑤1,𝑏=𝑏 0 (人为设置的𝜂超参数)(b不变的情况)优化一次:𝑤1 ← 𝑤0 − 𝜂 𝜕𝐿/𝜕𝑤 |𝑤=𝑤0,𝑏=𝑏 0。....(直到𝑤∗ , 𝑏 ∗ = 𝑎𝑟𝑔 min (𝑤,𝑏 )L)输出任务分类:回归(识别物体),分类(选择题),结构化(chatgpt)输入形式分类:向量(普通数据),矩阵(图片),序列(一句话,视频)原创 2024-03-22 16:06:10 · 197 阅读 · 0 评论