paddlenlp:社交网络中多模态虚假媒体内容核查(代码篇)

一、模型框架图

1、框架解读

第一列是输入,一部分是文本(需核查文本、文本证据材料),一部分是图片(需核查图像、图像证据材料)。

第二列是pre-trained模型,用于特征提取。文本部分采用Ernie-m模型提取特征,图像部分采用Resnet模型提取特征。

第三列是多头自注意力机制,可得到相关的文本证据特征相关的图像证据特征

最后,使用全连接层将标题特征图像特征相关的文本证据特征相关的图像证据特征四块特征拼接,输入到分类器得到最终预测结果
在这里插入图片描述

2、评价指标解读

采用在三个不同类别上的macro F1的高低进行评分,兼顾了准确率与召回率,是谣言检测领域主流的自动评价指标。

Macro-F1在sklearn里的计算方法就是计算每个类的F1-score的算数平均值,符合赛题定义。

本赛题共有三类,包含文娱、经济、健康。先分别计算每个类别的F1,再求平均值。

F1的计算,首先要了解混淆矩阵:
在这里插入图片描述
TPi 是指第 i 类的 True Positive   正类判定为正类;
FPi 是指第 i 类的 False Positive  负类判定为正类;
FNi 是指第 i 类的 FalseNegative  正类判定为负类;
TNi 是指第 i 类的 True Negative  负类判定为负类。

对第1类 :TP1=a;FP1=d+g;FN1=b+c;TN1=e+f+h+i;
对第2类 :TP2=e;FP2=b+h;FN2=d+f; TN2=a+c+g+i;
对第3类 :TP3=i; FP3=c+f; FN3=g+h;TN3=a+b+d+e;

在这里插入图片描述
最后计算公式如下:
m a c r o − F 1 = ( F 1 − s c o r e 1 + F 1 − s c o r e 2 + F 1 − s c o r e 3 ) / 3 macro-F1= (F1−score_1+F1−score_2+ F1−score_3)/3 macroF1=F1score1+F1score2+F1score3)/3
拿文娱举例,召回率:预测正确文娱的数占真实文娱数的比值​;准确率:预测正确文娱的数占预测为文娱数的比值

二、代码功能

1、数据集加载

#### load Datasets ####
train_dataset = NewsContextDatasetEmbs(data_items_train, 'queries_dataset_merge','train')
val_dataset = NewsContextDatasetEmbs(data_items_val,'queries_dataset_merge','val')
test_dataset = NewsContextDatasetEmbs(data_items_test,'queries_dataset_merge','test')

训练集、测试集、验证集都是通过NewsContextDatasetEmbs这个类函数来创建的。

传入的三个参数分别为 json文件数据指定数据集的根目录指定数据集类别

1)NewsContextDatasetEmbs

class NewsContextDatasetEmbs(Dataset):
    def __init__(self, context_data_items_dict, queries_root_dir, split):
        self.context_data_items_dict = context_data_items_dict
        self.queries_root_dir = queries_root_dir
        self.idx_to_keys = list(context_data_items_dict.keys())
        # 使用Imagenet的均值和标准差归一化
        # 将图像大小调整为(256×256)
        # 将其转换为(224×224)
        # 将其转换为张量 - 图像中的所有元素值都将被缩放,以便在[0,1]之间而不是原来的[0,255]范围内
        # 将其正则化,使用Imagenet数据
        # 均值 = [0.485,0.456,0.406],标准差 = [0.229,0.224,0.225]
        self.transform = T.Compose([
            T.Resize(256),
            T.CenterCrop(224),
            T.ToTensor(),
            T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  
        ])
        self.split = split

    # 计算字典的长度
    def __len__(self):
        return len(self.context_data_items_dict)

    #通过pil读取img图像,深度学习模型一般只支持三通道,(其他通道可能是透明度)
    def load_img_pil(self, image_path):
        # imghdr用于探测图片的格式,实际就是图片格式遍历匹配
        if imghdr.what(image_path) == 'gif':
            try:
                with open(image_path, 'rb') as f:
                    img = Image.open(f)
                    return img.convert('RGB')
            except:
                return None
        with open(image_path, 'rb') as f:
            img = Image.open(f)
            return img.convert('RGB')

   #加载图片直接返回图片的tensor
    def load_imgs_direct_search(self, item_folder_path, direct_dict):
        list_imgs_tensors = []
        count = 0
        keys_to_check = ['images_with_captions', 'images_with_no_captions', 'images_with_caption_matched_tags']
        for key1 in keys_to_check:
            if key1 in direct_dict.keys():
                for page in direct_dict[key1]:
                    image_path = os.path.join(item_folder_path, page['image_path'].split('/')[-1])
                    try:
                        pil_img = self.load_img_pil(image_path)   #调用load_img_pil函数读入只含三通道的图片
                    except Exception as e:
                        print(e)
                        print(image_path)
                    if pil_img == None: continue
                    transform_img = self.transform(pil_img)   # 将读入的图片处理成统一大小
                    count = count + 1
                    list_imgs_tensors.append(transform_img)
        stacked_tensors = paddle.stack(list_imgs_tensors, axis=0)
        return stacked_tensors

    #加载inverse_search文件夹下的说明文字,返回说明文字,通过图匹配到的文字
    def load_captions(self, inv_dict):
        captions = ['']

        #不同的方式处理方式不一样
        pages_with_captions_keys = ['all_fully_matched_captions', 'all_partially_matched_captions']
        for key1 in pages_with_captions_keys:
            if key1 in inv_dict.keys():
                for page in inv_dict[key1]:
                    #有title的dict
                    if 'title' in page.keys():
                        item = page['title']
                        item = process_string(item)
                        captions.append(item)
                    #有caption的dict
                    if 'caption' in page.keys():
                        sub_captions_list = []
                        unfiltered_captions = []
                        for key2 in page['caption']:
                            sub_caption = page['caption'][key2]
                            sub_caption_filter = process_string(sub_caption)      
                            # 将文字中的单引号、字体加粗的网页标签过滤掉,为啥需要替换,会有信息损失吗
                            # 是否可以替换更多,或者有其他方式解决
                            if sub_caption in unfiltered_captions: continue  # 如果已经加过的caption数据就不再加了
                            sub_captions_list.append(sub_caption_filter)
                            unfiltered_captions.append(sub_caption)
                        captions = captions + sub_captions_list
        #不同的方式处理不一样
        pages_with_title_only_keys = ['partially_matched_no_text', 'fully_matched_no_text']
        for key1 in pages_with_title_only_keys:
            if key1 in inv_dict.keys():
                for page in inv_dict[key1]:
                    if 'title' in page.keys():
                        title = process_string(page['title'])
                        captions.append(title)
        return captions

    # 加载img_html_news文件夹下的说明文字,返回说明文字,通过文字匹配到的图
    def load_captions_weibo(self, direct_dict):
        captions = ['']
        keys = ['images_with_captions', 'images_with_no_captions', 'images_with_caption_matched_tags']
        for key1 in keys:
            if key1 in direct_dict.keys():
                for page in direct_dict[key1]:
                    if 'page_title' in page.keys():
                        item = page['page_title']
                        item = process_string(item)
                        captions.append(item)
                    if 'caption' in page.keys():
                        sub_captions_list = []
                        unfiltered_captions = []
                        for key2 in page['caption']:
                            sub_caption = page['caption'][key2]
                            sub_caption_filter = process_string(sub_caption)
                            if sub_caption in unfiltered_captions: continue
                            sub_captions_list.append(sub_caption_filter)
                            unfiltered_captions.append(sub_caption)
                        captions = captions + sub_captions_list
                        # print(captions)
        return captions

    # 加载 dataset_items_train.json ,img文件夹的图片,返回 transform的图片img, 和文字caption
    def load_queries(self, key):
        caption = self.context_data_items_dict[key]['caption']
        image_path = os.path.join(self.queries_root_dir, self.context_data_items_dict[key]['image_path'])
        pil_img = self.load_img_pil(image_path)
        transform_img = self.transform(pil_img)
        return transform_img, caption

    def __getitem__(self, idx):
        key = self.idx_to_keys[idx]   #对应id的key值查询
        item = self.context_data_items_dict.get(str(key))
        # 如果为test没有label属性,所以train和val一起处理,else为test处理部分
        if self.split == 'train' or self.split == 'val':
            label = paddle.to_tensor(int(item['label']))
            direct_path_item = os.path.join(self.queries_root_dir, item['direct_path'])
            inverse_path_item = os.path.join(self.queries_root_dir, item['inv_path'])
            inv_ann_dict = json.load(open(os.path.join(inverse_path_item, 'inverse_annotation.json'),'r',encoding='UTF8'))
            direct_dict = json.load(open(os.path.join(direct_path_item, 'direct_annotation.json'),'r',encoding='UTF8'))
            captions = self.load_captions(inv_ann_dict)
            captions += self.load_captions_weibo(direct_dict)
            imgs = self.load_imgs_direct_search(direct_path_item, direct_dict)
            qImg, qCap = self.load_queries(key)
            sample = {'label': label, 'caption': captions, 'imgs': imgs, 'qImg': qImg, 'qCap': qCap}
        else:
            direct_path_item = os.path.join(self.queries_root_dir, item['direct_path'])
            inverse_path_item = os.path.join(self.queries_root_dir, item['inv_path'])
            inv_ann_dict = json.load(open(os.path.join(inverse_path_item, 'inverse_annotation.json'),'r',encoding='UTF8'))
            direct_dict = json.load(open(os.path.join(direct_path_item, 'direct_annotation.json'),'r',encoding='UTF8'))
            captions = self.load_captions(inv_ann_dict)
            captions += self.load_captions_weibo(direct_dict)
            imgs = self.load_imgs_direct_search(direct_path_item, direct_dict)
            qImg, qCap = self.load_queries(key)
            sample = {'caption': captions, 'imgs': imgs, 'qImg': qImg, 'qCap': qCap}
        return sample, len(captions), imgs.shape[0]    
        # 返回样本(包含核查文本、核查图片、query图片、query文本),样本个数,图片个数

2)Dataloader
将dataset数据集传入DataLoader,实现批量读取数据。
dataset:传入的数据集
batch_size:每个batch有多少个样本
shuffle:在每个epoch开始的时候,对数据进行重新排序
collate_fn:指定如何将sample list组成一个mini-batch数据。传给它参数需要是一个callable对象,需要实现对组建的batch的处理逻辑,并返回每个batch的数据。在这里传入的是collate_context_bert_traincollate_context_bert_test函数。
return_list:数据是否以list形式返回

# load DataLoader
from paddle.io import DataLoader
train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True, collate_fn = collate_context_bert_train, return_list=True)
val_dataloader = DataLoader(val_dataset, batch_size=4, shuffle=False, collate_fn = collate_context_bert_train,  return_list=True)
test_dataloader = DataLoader(test_dataset, batch_size=2, shuffle=False, collate_fn = collate_context_bert_test, return_list=True)

这里的mini-batch函数有两个,实现代码如下:

#文本行图像长度不一,需要自定义整理,进行格式大小统一,将数据整理成batch
def collate_context_bert_train(batch):
    #print(batch)
    samples = [item[0] for item in batch]
    max_captions_len = max([item[1] for item in batch])
    max_images_len = max([item[2] for item in batch])
    qCap_batch = []
    qImg_batch = []
    img_batch = []
    cap_batch = []
    labels = []
    for j in range(0,len(samples)):
        sample = samples[j]
        labels.append(sample['label'])
        captions = sample['caption']
        cap_len = len(captions)
        for i in range(0,max_captions_len-cap_len):
            captions.append("")
        if len(sample['imgs'].shape) > 2:
            padding_size = (max_images_len-sample['imgs'].shape[0], sample['imgs'].shape[1], sample['imgs'].shape[2], sample['imgs'].shape[3])
        else:
            padding_size = (max_images_len-sample['imgs'].shape[0],sample['imgs'].shape[1])
        padded_mem_img = paddle.concat((sample['imgs'], paddle.zeros(padding_size)),axis=0)
        img_batch.append(padded_mem_img)#pad证据图片
        cap_batch.append(captions)
        qImg_batch.append(sample['qImg'])#[3, 224, 224]
        qCap_batch.append(sample['qCap'])
    img_batch = paddle.stack(img_batch, axis=0)
    qImg_batch = paddle.stack(qImg_batch, axis=0)
    labels = paddle.stack(labels, axis=0)
    return labels, cap_batch, img_batch, qCap_batch, qImg_batch

def collate_context_bert_test(batch):
    samples = [item[0] for item in batch]
    max_captions_len = max([item[1] for item in batch])
    max_images_len = max([item[2] for item in batch])
    qCap_batch = []
    qImg_batch = []
    img_batch = []
    cap_batch = []
    for j in range(0,len(samples)):
        sample = samples[j]
        captions = sample['caption']
        cap_len = len(captions)
        for i in range(0,max_captions_len-cap_len):
            captions.append("")
        if len(sample['imgs'].shape) > 2:
            padding_size = (max_images_len-sample['imgs'].shape[0],sample['imgs'].shape[1],sample['imgs'].shape[2],sample['imgs'].shape[3])
        else:
            padding_size = (max_images_len-sample['imgs'].shape[0],sample['imgs'].shape[1])
        padded_mem_img = paddle.concat((sample['imgs'], paddle.zeros(padding_size)),axis=0)
        img_batch.append(padded_mem_img)
        cap_batch.append(captions)
        qImg_batch.append(sample['qImg'])
        qCap_batch.append(sample['qCap'])
    img_batch = paddle.stack(img_batch, axis=0)
    qImg_batch = paddle.stack(qImg_batch, axis=0)
    return cap_batch, img_batch, qCap_batch, qImg_batch

2、模型定义

主要是Network,其中ErnieMModel由于是预训练的模型,所以不需要写forward。

class EncoderCNN(nn.Layer):
    def __init__(self, resnet_arch = 'resnet101'):
        super(EncoderCNN, self).__init__()
        if resnet_arch == 'resnet101':
            resnet = models.resnet101(pretrained=True)
        modules = list(resnet.children())[:-2]
        self.resnet = nn.Sequential(*modules)
        self.adaptive_pool = nn.AdaptiveAvgPool2D((1, 1))
    def forward(self, images, features='pool'):
        out = self.resnet(images)
        if features == 'pool':
            out = self.adaptive_pool(out)
            out = paddle.reshape(out, (out.shape[0],out.shape[1]))
        return out

class NetWork(nn.Layer):
    def __init__(self, mode):
        super(NetWork, self).__init__()
        self.mode = mode
        self.ernie = ErnieMModel.from_pretrained('ernie-m-base')
        self.tokenizer = ErnieMTokenizer.from_pretrained('ernie-m-base')
        self.resnet = EncoderCNN()
        self.classifier1 = nn.Linear(2*(768+2048),1024)
        self.classifier2 = nn.Linear(1024,3)
        self.attention_text = nn.MultiHeadAttention(768,16)
        self.attention_image = nn.MultiHeadAttention(2048,16)
        if self.mode == 'text':
            self.classifier = nn.Linear(768,3)
        self.resnet.eval()

    def forward(self,qCap,qImg,caps,imgs):
        self.resnet.eval()
        encode_dict_qcap = self.tokenizer(text = qCap ,max_length = 128 ,truncation=True, padding='max_length')
        input_ids_qcap = encode_dict_qcap['input_ids']
        input_ids_qcap = paddle.to_tensor(input_ids_qcap)
        qcap_feature, pooled_output= self.ernie(input_ids_qcap) #(b,length,dim)
        if self.mode == 'text':
            logits = self.classifier(qcap_feature[:,0,:].squeeze(1))
            return logits
        caps_feature = []
        for i,caption in enumerate (caps):
            encode_dict_cap = self.tokenizer(text = caption ,max_length = 128 ,truncation=True, padding='max_length')
            input_ids_caps = encode_dict_cap['input_ids']
            input_ids_caps = paddle.to_tensor(input_ids_caps)
            cap_feature, pooled_output= self.ernie(input_ids_caps) #(b,length,dim)
            caps_feature.append(cap_feature)
        caps_feature = paddle.stack(caps_feature,axis=0) #(b,num,length,dim)
        caps_feature = caps_feature.mean(axis=1)#(b,length,dim)
        caps_feature = self.attention_text(qcap_feature,caps_feature,caps_feature) #(b,length,dim)
        imgs_features = []
        for img in imgs:
            imgs_feature = self.resnet(img) #(length,dim)
            imgs_features.append(imgs_feature)
        imgs_features = paddle.stack(imgs_features,axis=0) #(b,length,dim)
        qImg_features = []
        for qImage in qImg:
            qImg_feature = self.resnet(qImage.unsqueeze(axis=0)) #(1,dim)
            qImg_features.append(qImg_feature)
        qImg_feature = paddle.stack(qImg_features,axis=0) #(b,1,dim)
        imgs_features = self.attention_image(qImg_feature,imgs_features,imgs_features) #(b,1,dim)
        # [1, 128, 768] [1, 128, 768] [1, 1, 2048] [1, 1, 2048] origin
        # print(qcap_feature.shape,caps_feature.shape,qImg_feature.shape,imgs_features.shape)
        # print((qcap_feature[:,0,:].shape,caps_feature[:,0,:].shape,qImg_feature.squeeze(1).shape,imgs_features.squeeze(1).shape))
        # ([1,768], [1 , 768], [1, 2048], [1,  2048])
        feature = paddle.concat(x=[qcap_feature[:,0,:], caps_feature[:,0,:], qImg_feature.squeeze(1), imgs_features.squeeze(1)], axis=-1)
        logits = self.classifier1(feature)
        logits = self.classifier2(logits)
        return logits

model = NetWork("image")

3、模型训练

训练参数设置,包含训练周期,学习率lr,优化器,损失函数,评估指标等

# train_setting
epochs = 2    #迭代周期为2,每个周期都会生成一组模型参数
num_training_steps = len(train_dataloader) * epochs
warmup_steps = int(num_training_steps*0.1)
print(num_training_steps,warmup_steps)      #5592 559
# 定义 learning_rate_scheduler,负责在训练过程中对 lr 进行调度
lr_scheduler = LinearDecayWithWarmup(1e-6, num_training_steps, warmup_steps)
# 训练结束后,存储模型参数
save_dir ="checkpoint/"   #该目录是指在每个周期中最终保存的模型参数
best_dir = "best_model"   #该目录为最好的模型参数,即为最终预测需要的模型参数
# 创建保存的文件夹
os.makedirs(save_dir,exist_ok=True)
os.makedirs(best_dir,exist_ok=True)

decay_params = [
    p.name for n, p in model.named_parameters()
    if not any(nd in n for nd in ["bias", "norm"])
]

# 定义优化器 Optimizer
optimizer = paddle.optimizer.AdamW(
    learning_rate=lr_scheduler,
    parameters=model.parameters(),
    weight_decay=1.2e-4, 
    apply_decay_param_fun=lambda x: x in decay_params)

# 定义损失函数,交叉熵损失
criterion = paddle.nn.loss.CrossEntropyLoss()

# 评估的时候采用准确率指标
metric = paddle.metric.Accuracy()

# 定义线下评估 评价指标为acc,注意线上评估是macro-f1 score
@paddle.no_grad()
def evaluate(model, criterion, metric, data_loader):
    model.eval()
    metric.reset()
    losses = []
    for batch in data_loader:
        labels, cap_batch, img_batch, qCap_batch, qImg_batch = batch
        logits = model(qCap=qCap_batch,qImg=qImg_batch,caps=cap_batch,imgs=img_batch)
        loss = criterion(logits, labels)
        losses.append(loss.numpy())
        correct = metric.compute(logits, labels)
        metric.update(correct)
        accu = metric.accumulate()
    print("eval loss: %.5f, accu: %.5f" % (np.mean(losses), accu))
    model.train()
    metric.reset()
    return np.mean(losses), accu

定义训练,包含五个部分:模型,损失函数,评价指标,训练dataloader,验证dataloader

def do_train(model, criterion, metric, val_dataloader, train_dataloader):
    print("train run start")
    global_step = 0
    tic_train = time.time()
    best_accuracy = 0.0
    for epoch in range(1, epochs + 1):
        for step, batch in enumerate(train_dataloader, start=1):
            labels, cap_batch, img_batch, qCap_batch, qImg_batch = batch
            probs = model(qCap=qCap_batch, qImg=qImg_batch, caps=cap_batch, imgs=img_batch)
            loss = criterion(probs, labels)
            correct = metric.compute(probs, labels)
            metric.update(correct)
            acc = metric.accumulate()

            global_step += 1
            # 每间隔 100 step 输出训练指标
            if global_step % 100 == 0:
                print(
                    "global step %d, epoch: %d, batch: %d, loss: %.5f, accu: %.5f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss, acc,
                       10 / (time.time() - tic_train)))
                tic_train = time.time()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_grad()

            # 每间隔一个epoch 在验证集进行评估
            if global_step % len(train_dataloader) == 0:
                eval_loss, eval_accu = evaluate(model, criterion, metric, val_dataloader)
                save_param_path = os.path.join(save_dir + str(epoch), 'model_state.pdparams')
                paddle.save(model.state_dict(), save_param_path)
                if (best_accuracy < eval_accu):
                    best_accuracy = eval_accu
                    # 保存模型
                    save_param_path = os.path.join(best_dir, 'model_best.pdparams')
                    paddle.save(model.state_dict(), save_param_path)
                    
do_train(model, criterion, metric, val_dataloader, train_dataloader)

4、模型预测

在预测模型前,需要重启内核,释放了内存(图片数据很吃内存)。

需要重新运行第一块和第二块的代码,再运行以下代码:

params_path = 'best_model/model_best.pdparams'

#加载训练好的模型参数
if params_path and os.path.isfile(params_path):
    # 加载模型参数
    state_dict = paddle.load(params_path)
    model.set_dict(state_dict)
    print("Loaded parameters from %s" % params_path)
 
results = []
# 切换model模型为评估模式,关闭dropout等随机因素
id2name ={ 0:"non-rumor", 1:"rumor",2:"unverified"}
model.eval()
count=0
bar = tqdm(test_dataloader, total=len(test_dataloader))
for batch in bar:
    count+=1
    cap_batch, img_batch, qCap_batch, qImg_batch = batch
    logits = model(qCap=qCap_batch,qImg=qImg_batch,caps=cap_batch,imgs=img_batch)
    # 预测分类
    probs = F.softmax(logits, axis=-1)
    label = paddle.argmax(probs, axis=1).numpy()
    results += label.tolist()

print(results[:5])
print(len(results))
results = [id2name[i] for i in results]

输出结果

#id/label
#字典中的key值即为csv中的列名
id_list=range(len(results))
print(id_list)
frame = pd.DataFrame({'id':id_list,'label':results})
frame.to_csv("result.csv",index=False,sep=',')

# 根据要求打包
!zip test.zip result.csv 

三、写在最后

讲讲最精华的部分,需要从哪些地方入手来提升模型,谈谈我的理解:

1、数据源:数据并不干净,图片数据量很大,是否有操作空间
2、数据特征:抽取的数据特征是否存在信息丢失,或者说能补充更多通过数据探索发现的规律特征
3、模型选择:baseline是一个比较稳的方式,也可以尝试
4、参数调整:这部分尽量放到最后做,好的参数也可能让模型work更好

本次记录主要还是以学习为主,抽了工作之余来进行baseline的翻译和整理。探索了一个带大家最快上手的路径,降低大家的入门难度。

看完觉得有用的话,记得点个赞,不做白嫖党~

【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于机器学习+深度学习+bert方法的虚假新闻检测项目源码.zip # Fake-News-Detection NKU_2022Fall Python language programming project **虚假新闻检测**项目,简单的**nlp分类**问题 使用**机器学习**、**深度学习**和**bert模型**解决问题 仓库只上传了代码,大文件统统没有上传,下面网盘链接用于下载需要的大文件,照着文件夹融合网盘文件和代码文件即可 [所需附件下载链接](https://pan.baidu.com/s/1WpDSuQgC1HQaVNc8xlpuyQ?pwd=jzkl ) ### 问题描述 数据集是文微信消息,包括微信消息的Official Account Name,Title,News Url,Image Url,Report Content,label。Title是微信消息的标题,label是消息的真假标签(0是real消息,1是fake消息)。训练数据保存在train.news.csv,测试数据保存在test.news.csv。 实验过程先统计分析训练数据【train.news.csv】。根据train.news.csv的Title文字训练模型,然后在test.news.csv上测试,给出Precision, Recall, F1-Score, AUC的结果。 ### 环境配置 使用anaconda集成开发环境,pytorch深度学习框架 具体配置方法我参考的博客链接:[PyTorch环境配置及安装_pytorch配置-CSDN博客](https://blog.csdn.net/weixin_43507693/article/details/109015177) ### 方法介绍 #### 机器学习模型 主要流程就是数据加载、预处理、特征工程、模型训练与评估,nlp的任务需要将文本数据转换成向量数据,这里用了词袋模型和`tyidf`两张方法。 代码在`traditional.py`,都有现成的包用,简单调包调参就行,使用了随机森林、支持向量机、朴素贝叶斯、逻辑回归等方法,有的算法可以加入网格搜索与交叉验证调参,不过感觉如果想继续优化可能得在特征工程部分下手。 最后得到的结果: | 使用模型 | 向量化方法 | acc | recall(1) | precision(1) | auc | | :------------------------------: | :--------: | :----: | :-------: | :------------: | :--: | | 朴素贝叶斯+jieba精确模式 | 词袋模型 | 84.33% | 0.60 | 0.47 | 0.74 | | 同上 | tyidf | 88.97% | 0.33 | 0.80 | 0.66 | | 高斯内核支持向量机+jieba搜索引擎 | 词袋模型 | 86.62% | 0.10 | 0.84 | 0.55 | | 同上 | tyidf | 91.21% | 0.46 | 0.89 | 0.72 | | 随机森林+jieba精确模式 | 词袋模型 | 87.03% | 0.12 | 0.97 | 0.56 | | 同上 | tyidf | 87.18% | 0.13 | 0.98 | 0.56 | | 逻辑回归+jieba精确模式 | 词袋模型 | 90.48% | 0.50 | 0.77 | 0.74 | | 同上 | tyidf | 89.33% | 0.37 | 0.79 | 0.68 | #### 神经网络解决
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值