机器学习中回归模型六大评价指标

本文介绍了机器学习中回归问题的六大评价指标,包括其含义和模型评价方法,详细阐述了相关数学公式,并提供了相关资源链接,帮助理解评估模型的常用标准。
摘要由CSDN通过智能技术生成


一、机器学习中,回归问题的六大评价指标是什么?

	回归问题五大评价指标分别为 
	皮尔逊相关系数,
	解释方差分数(explained_varience_score),
	平均绝对误差(mean_absolute_error),
	均方差(mean_square_error), 
	r2分数(r2_score) 
	和 调整r2分数(r2_score_adjust)

二、六大评价指标都代表什么含义?如何进行模型评价?

	2.1 皮尔逊相关系数(pearsonr)
	值的范围为 [-1,1], 
	值的意义是 描述两个变量之间的线性相关性,既不考虑两个变量的线性相关性的斜率,
	也不考虑两个变量的非线性相关性,只考虑两个变量线性相关性的程度;越接近1,说明模型性能越好。

公式:

在这里插入图片描述

	2.2 解释方差分数(explained_varience_score)
	值的范围为 [0,1], 
	值的意义是 描述自变量对因变量方差变化的解释性程度;即特征对目标值在模型中的拟合程度;
	越接近1,说明模型性能越好。

公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Efred.D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值