一、机器学习中,回归问题的六大评价指标是什么?
回归问题五大评价指标分别为
皮尔逊相关系数,
解释方差分数(explained_varience_score),
平均绝对误差(mean_absolute_error),
均方差(mean_square_error),
r2分数(r2_score)
和 调整r2分数(r2_score_adjust)
二、六大评价指标都代表什么含义?如何进行模型评价?
2.1 皮尔逊相关系数(pearsonr)
值的范围为 [-1,1],
值的意义是 描述两个变量之间的线性相关性,既不考虑两个变量的线性相关性的斜率,
也不考虑两个变量的非线性相关性,只考虑两个变量线性相关性的程度;越接近1,说明模型性能越好。
公式:
2.2 解释方差分数(explained_varience_score)
值的范围为 [0,1],
值的意义是 描述自变量对因变量方差变化的解释性程度;即特征对目标值在模型中的拟合程度;
越接近1,说明模型性能越好。
公式: