如果使用的spark://,那么代表就是standalone模式,那么就需要sbin/start-all.sh启动一下spark集群进行资源调度。
/usr/spark/sbin/start-all.sh ---启动spark集群所有节点
而 /usr/spark/sbin/start-master.sh 则是在驱动器节点进行启动主节点(master),/usr/spark/sbin/start-slave.sh,在每个执行器节点启动工作(worker)节点
一 指定配置文件目录
spark-submit \
--class mainclass(全路径的程序主类) \
--master spark://hadoop:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
Litchi-1.0-SNAPSHOT.jar /home/hadoop/properties/hdfs.properties
测试:
1.删除对应日期目录(可能已存在,预防------代码需要处理-----未完成)
hdfs dfs -rm -r /litchi/weekreport
/usr/spark/sbin/start-all.sh ---启动spark集群所有节点
而 /usr/spark/sbin/start-master.sh 则是在驱动器节点进行启动主节点(master),/usr/spark/sbin/start-slave.sh,在每个执行器节点启动工作(worker)节点
一 指定配置文件目录
spark-submit \
--class mainclass(全路径的程序主类) \
--master spark://hadoop:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
Litchi-1.0-SNAPSHOT.jar /home/hadoop/properties/hdfs.properties
测试:
1.删除对应日期目录(可能已存在,预防------代码需要处理-----未完成)
hdfs dfs -rm -r /litchi/weekreport
二 指定Spark ClassPath
spark-submit --class mainclass(全路径的程序主类) \
--master spark://hadoop:7077 \
--executor-memory 2G \
--driver-class-path hdfs://hadoop:9000/jar/spark/ \ (官方建议使用driver-class-path指定spark classPath:本地或hdfs目录)
--total-executor-cores 2 Litchi-1.0-SNAPSHOT.jar \
properties/hdfs.properties