放苹果————递归的应用

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1
7 3

Sample Output

8

思路:刚开始一直在想着或许是有一些规律?数据不大要不暴搜?然而想法均以失败告终,原因是情况太多了。。

那该如何去思考呢?其实分类的话只需要考虑有空盘子和没有空盘子两种情况:

当m>n时

1)有空盘子,那么有一个空盘子和去掉这个盘子是没有区别的,因此:apple(m,n-1);至于两个三个盘子是空的,这些情况就是上式的递归。

2)没有空盘子,那么每个盘子同时减掉一个苹果,对结果没有影响:apple(m-n,n).

两种情况讨论完之后,情况一共=apple(m,n-1)+apple(m-n,n)种;

接着,考虑m<n,n比m多出来的盘子没有意义,去掉:=apple(m,m);

既然是递归,总要有跳出来的条件:

                 m == 0 || n == 1

所以,代码为:

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
using namespace std;

int Apple(int m,int n)
{
	if(m == 0 || n == 1)
	     return 1;
	else
	{
		if(m < n) return Apple(m,m);
		else return Apple(m,n-1)+Apple(m-n,n);
	}
}


int main()
{
	int t,x,y;
	cin>>t;
	while(t--)
	{
		scanf("%d %d",&x,&y);
		cout<<Apple(x,y)<<endl;
	}
    return 0;
} 

 

阅读更多
换一批

没有更多推荐了,返回首页