书单推荐 | 数据挖掘和统计科学自学十大必备读物

本文提供了十本免费的数据挖掘和统计科学领域的书籍推荐,适合自学。内容涵盖概率统计、贝叶斯方法、机器学习基础、统计学习理论、数据科学基础、大数据挖掘以及深度学习等主题,旨在帮助读者理解和应用相关知识。
摘要由CSDN通过智能技术生成

作者:Matthew Mayo

编译:keiko,万如苑,松清波


我们在这篇文章中推荐了10本学习机器学习和数据科学的书,让你的秋季阅读计划顺利扬帆起航。

关键词:Books, Data Science, ebook, Free ebook, Machine Learning


还有什么比免费的机器学习和数据科学读物更适合用来享受秋天的呢?

下面的免费书单中从统计学基础知识,到机器学习的基本概念,再到更重点的大框架内容,对于高深的话题也有所涉猎,最后以一本总结性的书结尾。既有经典名著,也有当代的作品,希望你能在其中找到一些有趣的新内容。


1

用统计学的方式思考

Think Stats: Probability and Statistics for Programmers

作者:Allen B. Downey


《用统计学的方式思考》是为python的程序员设计的一本概率论和数理统计知识的入门书籍。


本书主要介绍了剖析真实数据集和解决有趣问题的简单方法。这本书的案例使用的是美国国家卫生研究院的数据,并鼓励读者使用真实的数据集做项目。

地址:

 http://www.greenteapress.com/thinkstats/


2

概率编程与贝叶斯方法

Probabilistic Programming & Bayesian Methods for Hackers

作者:Cam Davidson-Pilon


一本介绍贝叶斯方法和概率编程的入门教程,主要是从对编程的理解出发,数学知识其次。

贝叶斯方法是概率推理中一种很实用的方法,在这本书当中,贝叶斯方法一直隐藏在一章章慢慢的数学分析的背后。贝叶斯推理的典型内容包含两到三章概率论知识,然后再介绍贝叶斯推理。可惜的是,由于大多数贝叶斯模型的数学难度太高,这本书中只为读者介绍了简单和虚构的例子。这会让读者小看贝叶斯推理。而事实上,这是因为作者自己的偏好导致的。

来源:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值