Z字形变换
题目描述:
将一个给定字符串根据给定的行数,以从上往下、从左到右进行 Z 字形排列。
比如输入字符串为 “LEETCODEISHIRING” 行数为 3 时,排列如下:
L C I R
E T O E S I I G
E D H N
之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:“LCIRETOESIIGEDHN”。
请你实现这个将字符串进行指定行数变换的函数:
string convert(string s, int numRows);
示例 1:
输入: s = "LEETCODEISHIRING", numRows = 3
输出: "LCIRETOESIIGEDHN"
示例 2:
输入: s="PAYPALISHIRING", numRows=3
输出: "PAHNAPLSIIGYIR"
解释:
P A H N
A P L S I I G
Y I R
解题思路:
可以观察例子中Z字形字符串,得出相对应的规律。
重新组合后的形状其实就是一个个N
字形字符串,相邻N
对应位置之间的字符个数是固定的,如例子中的P-A-H-N
之间的字符都是3个。现在假设行数为n
,则对应位置字符间的间距都为
2
n
−
3
2n-3
2n−3 ,现在第一排和最后一排的字符顺序就可以确定了;但中间排的字符就比较特殊,在对应位置之间还会夹着一个字符。以例子中第一列的A
和第二列的P
来说,假设A
的下标为i
(从0开始),则A
和P
的间距为
2
(
n
−
i
−
1
)
−
1
=
2
n
−
2
i
−
3
2(n−i−1)−1=2n−2i−3
2(n−i−1)−1=2n−2i−3 ,而A
和L
的间距为
2
n
−
3
2n-3
2n−3 ,同时去掉P
自己,所以P
和L
的间距为
(
2
n
−
3
)
−
(
2
n
−
2
i
−
3
)
−
1
=
2
i
−
1
(2n−3)−(2n−2i−3)−1=2i−1
(2n−3)−(2n−2i−3)−1=2i−1。
这样只需遍历第一列的字符,并依次加上对应的间距来获取后面的字符即可。上文的间距是指中间隔了几个字符。
Python源码:
class Solution:
def convert(self, s: str, numRows: int) -> str:
str_length = len(s)
ans = ""
if numRows <= 1:
return s
for i in range(numRows):
c1 = 2 * numRows - 2 * (i + 1)
c2 = 2 * i
cnt = i
ans += s[cnt]
while cnt < str_length:
if c1 != 0:
cnt += c1
if cnt < str_length:
ans += s[cnt]
if c2 != 0:
cnt += c2
if cnt < str_length:
ans += s[cnt]
return ans
print(Solution().convert("PAYPALISHIRING",3))
欢迎关注我的github:https://github.com/UESTCYangHR