1定义
拓扑排序(Topological Sorting)
给定一张 有向无环图 ,排出所有顶点的一个序列A,满足:
对于图中的每一条有向边(x,y),x在序列A中都出现在y之前,则称A为该图的顶点的一个拓扑序。
如图,{2,3,1,7,5,4,6},{2,3,5,1,7,4,6}都为合法的拓扑序
拓扑排序是可以判断有向图得中是否有环的,比如环{2,1,7}
2两种拓扑排序算法
2.1kahn算法
该算法类似于宽搜(BFS),利用队列求解,主要思想是:向队列中压入入度为0的节点,迭代时出队节点,并遍历以该节点为起点的边,找到对应的终点,同时更新终点入度,如果恰好该终点的入度为0,则直接入队。主要利用了din数组,记录每个节点的入度。
迭代过程中,如果图为有向无环图,则迭代对访问所有节点,拓扑序长度等于节点个数,但图中有环的话,那迭代不可能遍历所有的节点(因为环会导致没有新的入度为零的节点入队)
具体实现如下
public class topoSort {
//邻接表
List<Integer>[] e;
//拓扑序列
List<Integer> tp;
//度数组 din[i]=m 表示节点i有入度m个
int[] din;
public boolean getRes(){
//有向图
//节点数量
int N = 7;
//边的声明
List<String> edge = new ArrayList<>();
edge.add("2,1");
edge.add("2,7");
edge.add("1,7");
edge.add("7,4");
edge.add("7,6");
edge.add("3,1");
edge.add("3,5");
edge.add("5,6");
//初始化e
e = new ArrayList[N+1];
for(int i = 0;i<N+1;i++){
e[i] = new ArrayList<Integer>();
}
//初始化tp
tp = new ArrayList<>();
//初始化din
din = new int[N+1];
//注入边信息
for(String ed:edge){
String[] arr = ed.split(",");
int v = Integer.parseInt(arr[0]);
int u = Integer.parseInt(arr[1]);
e[v].add(u);
din[u]++;
}
return topoSort();
}
//false代表有环
public boolean topoSort(){
Deque<Integer> queue = new LinkedList<>();
//将入度为0的节点入队
for(int i = 1;i<din.length;i++){
if(din[i]==0){
queue.offer(i);
}
}
while(!queue.isEmpty()){
//节点出队
int poll = queue.poll();
tp.add(poll);
for(int child:e[poll]){
if(--din[child]==0){
//将入度为零的子节点入队
queue.offer(child);
}
}
}
//false代表有环 true代表无环
return tp.size()==din.length;
}
public static void main(String[] args) {
topoSort topoSort = new topoSort();
boolean res = topoSort.getRes();
}
}
2.1dfs算法(染色)
不同于kahn算法,深度优先算法将沿着边的方向持续前进,直到尽头。这里主要的利用了visited数组记录节点的访问状态。0 -> -1 ->
1,0状态标识该节点还没被访问;-1节点标识该节点第一次被访问;1标识该节点第2次被访问,可形象成为染色法
算法设计里不是所有节点都能被访问第二次,因为如果算法在遍历过程中发现了环,就会立即返回,返回期间不会再干其他事情(比如更新节点的访问状态等),直到方法整个返回。
具体实现如下
public class topoSort1 {
//邻接表
List<Integer>[] e;
//拓扑序列
List<Integer> tp;
//访问状态数组 记录访问状态
int[] visited;
public void init(){
//有向图
//节点数量
int N = 7;
//边的声明
List<String> edge = new ArrayList<>();
edge.add("2,1");
edge.add("2,7");
edge.add("1,7");
edge.add("7,4");
edge.add("7,6");
edge.add("3,1");
edge.add("3,5");
edge.add("5,6");
//初始化e
e = new ArrayList[N+1];
for(int i = 0;i<N+1;i++){
e[i] = new ArrayList<Integer>();
}
//初始化tp
tp = new ArrayList<>();
//初始化visited 默认状态为0
visited = new int[N+1];
//注入边信息
for(String ed:edge){
String[] arr = ed.split(",");
int v = Integer.parseInt(arr[0]);
int u = Integer.parseInt(arr[1]);
e[v].add(u);
}
}
public boolean getRes(){
for(int i = 1;i<visited.length;i++){
if(visited[i]==0){
if(!dfs(i)){
return false;
}
}
}
Collections.reverse(tp);
return true;
}
//false代表有环
public boolean dfs(int i){
//首次访问节点 装填由0转为-1 第一次变色
visited[i] = -1;
for(int child:e[i]){
if(visited[child]==0){
if(!dfs(child)){
return false;
}
}else if(visited[child]==-1){
return false;
}
}
//遍历完所有节点并没有环 由-1转为1 第二次变色
visited[i] = 1;
//加入topo序列
tp.add(i);
return true;
}
public static void main(String[] args) {
topoSort1 topoSort = new topoSort1();
topoSort.init();
boolean res = topoSort.getRes();
System.out.println();
}