编程珠玑(2)第十二章学习笔记 取样问题

本章讲取样问题,亦即随机数的生成问题,这是不论在实际生活中还是在学习应用中都常常碰到的问题。

本章需要解决这样一个问题:怎样生成m个有序的且范围在0到n-1之间的不重复的随机数?通过分析可得:此问题的需求至少有三点:m个有序的、不重复的、范围在0到n-1之间的随机数。

 

第一种解决方案:

来自Knuth的The Art of Computer Programming。该算法依次考虑整数0,1,2,…,n-1,并通过一个适当的随机测试对每个整数进行选择。通过按序访问整数,可以保证输出结果是有序的。

//第一种解决方案
void genknuth(int m, int n)
{
	int i;
	for(i=0; i<n; i++){
		if(bigrand() % (n-i) < m){
			printf("%d ",i);
			m--;
		}
	}
	printf("\n");
}

第二种方案:

在一个初始为空的集合里插入随机整数,直到个数足够。利用C++标准模板库,用set表示集合。

C++标准模板库规范每次插入操作都在O(logm)时间内完成,而遍历集合需要O(m)的时间,因此次完整程序需要时间O(mlogm)的时间。

//第二种解决方案
void gensets(int m, int n)
{
	set<int> S;
	set<int>::iterator i;
	while(S.size() < m){
		S.insert(bigrand()%n);
	}
	for(i=S.begin(); i!=S.end(); i++){
		printf("%d ", *i);
	}
	printf("\n");
}

第三种方案:

把包含整数0到n-1的数组顺序打乱,然后把前m个元素排序输出。

//第三种解决方案
void genshuf(int m, int n)
{
	int i, j;
	int *X = new int[n];
	for(i=0; i<n; i++){
		X[i] = i;
	}
	for(i=0; i<n; i++){
		j = randint(i, n-1);
		int t = X[i];
		X[i] = X[j];
		X[j] = t;
	}
	sort(X, X+m);
	for(i=0; i<m; i++){
		printf("%d ", X[i]);
	}
	printf("\n");
}


此算法需要n个元素的内存空间和O(n+mlogm)的时间。

本章示例了编程过程中的几个重要步骤:

1、正确理解所遇到的问题。与用户讨论问题产生的背景。问题的陈述通常就包含了与解决方案有关的想法;跟早期的想法一样,这些想法都应当加以考虑。

2、提炼出抽象问题。简洁、明确的问题陈述不仅可以帮组我们解决当前遇到的问题,还有助于我们把解决方案应用的其他问题当中。

3、考虑尽可能多的方法。非正式的高级语言可以帮助我们描述设计方案;伪代码表示控制流,抽象数据类型表示关键的数据结构。(对文献的熟悉程度在这一阶段非常重要)

4、实现一种解决方案。如果运气好的话,在前一阶段我们就能发现某种方案显著优于其他方案;否则我们就得列出几种性能比较好的方案,然后从中选择。我们应该用简单的代码和有效的操作来实现最终选择的解决方案。


下面是上述三个解决方案的全部代码:

#include<stdio.h>
#include<stdlib.h>
#include<set>
#include<algorithm>
using namespace std;

#define RAND_MAX 10000

int bigrand()
{
	return rand()*RAND_MAX+rand();
}

int randint(int l, int u)
{
	return l+rand()%(u-l+1);
}

//第一种解决方案
void genknuth(int m, int n)
{
	int i;
	for(i=0; i<n; i++){
		if(bigrand() % (n-i) < m){
			printf("%d ",i);
			m--;
		}
	}
	printf("\n");
}

//第二种解决方案
void gensets(int m, int n)
{
	set<int> S;
	set<int>::iterator i;
	while(S.size() < m){
		S.insert(bigrand()%n);
	}
	for(i=S.begin(); i!=S.end(); i++){
		printf("%d ", *i);
	}
	printf("\n");
}
//第二种方案的Floyd改进
void genfloyd(int m, int n)
{
	int j, t;
	set<int> S;
	set<int>::iterator i;

	for(j=n-m; j<n; j++){
		t = bigrand() % (j+1);
		if(S.find(t) == S.end()){
			S.insert(t);
		}
		else{
			S.insert(j);
		}
	}
	
	for(i=S.begin(); i!=S.end(); i++){
		printf("%d ", *i);
	}
	printf("\n");
}


//第三种解决方案
void genshuf(int m, int n)
{
	int i, j;
	int *X = new int[n];
	for(i=0; i<n; i++){
		X[i] = i;
	}
	for(i=0; i<n; i++){
		j = randint(i, n-1);
		int t = X[i];
		X[i] = X[j];
		X[j] = t;
	}
	sort(X, X+m);
	for(i=0; i<m; i++){
		printf("%d ", X[i]);
	}
	printf("\n");
}

int main()
{
	int m, n;

	printf("输入m和n(m是随机数个数,n是随机数范围):\n");
	scanf("%d %d", &m, &n);

	printf("第一种解决方案:\n");
	genknuth(m, n);

	printf("\n第二种解决方案:\n");
	gensets(m, n);

	printf("\n第二种解决方案的floyd改进:\n");
	genfloyd(m, n);

	printf("\n第三种解决方案:\n");
	genshuf(m, n);

	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值