本章讲取样问题,亦即随机数的生成问题,这是不论在实际生活中还是在学习应用中都常常碰到的问题。
本章需要解决这样一个问题:怎样生成m个有序的且范围在0到n-1之间的不重复的随机数?通过分析可得:此问题的需求至少有三点:m个有序的、不重复的、范围在0到n-1之间的随机数。
第一种解决方案:
来自Knuth的The Art of Computer Programming。该算法依次考虑整数0,1,2,…,n-1,并通过一个适当的随机测试对每个整数进行选择。通过按序访问整数,可以保证输出结果是有序的。
//第一种解决方案
void genknuth(int m, int n)
{
int i;
for(i=0; i<n; i++){
if(bigrand() % (n-i) < m){
printf("%d ",i);
m--;
}
}
printf("\n");
}
第二种方案:
在一个初始为空的集合里插入随机整数,直到个数足够。利用C++标准模板库,用set表示集合。
C++标准模板库规范每次插入操作都在O(logm)时间内完成,而遍历集合需要O(m)的时间,因此次完整程序需要时间O(mlogm)的时间。
//第二种解决方案
void gensets(int m, int n)
{
set<int> S;
set<int>::iterator i;
while(S.size() < m){
S.insert(bigrand()%n);
}
for(i=S.begin(); i!=S.end(); i++){
printf("%d ", *i);
}
printf("\n");
}
第三种方案:
把包含整数0到n-1的数组顺序打乱,然后把前m个元素排序输出。
//第三种解决方案
void genshuf(int m, int n)
{
int i, j;
int *X = new int[n];
for(i=0; i<n; i++){
X[i] = i;
}
for(i=0; i<n; i++){
j = randint(i, n-1);
int t = X[i];
X[i] = X[j];
X[j] = t;
}
sort(X, X+m);
for(i=0; i<m; i++){
printf("%d ", X[i]);
}
printf("\n");
}
此算法需要n个元素的内存空间和O(n+mlogm)的时间。
本章示例了编程过程中的几个重要步骤:
1、正确理解所遇到的问题。与用户讨论问题产生的背景。问题的陈述通常就包含了与解决方案有关的想法;跟早期的想法一样,这些想法都应当加以考虑。
2、提炼出抽象问题。简洁、明确的问题陈述不仅可以帮组我们解决当前遇到的问题,还有助于我们把解决方案应用的其他问题当中。
3、考虑尽可能多的方法。非正式的高级语言可以帮助我们描述设计方案;伪代码表示控制流,抽象数据类型表示关键的数据结构。(对文献的熟悉程度在这一阶段非常重要)
4、实现一种解决方案。如果运气好的话,在前一阶段我们就能发现某种方案显著优于其他方案;否则我们就得列出几种性能比较好的方案,然后从中选择。我们应该用简单的代码和有效的操作来实现最终选择的解决方案。
下面是上述三个解决方案的全部代码:
#include<stdio.h>
#include<stdlib.h>
#include<set>
#include<algorithm>
using namespace std;
#define RAND_MAX 10000
int bigrand()
{
return rand()*RAND_MAX+rand();
}
int randint(int l, int u)
{
return l+rand()%(u-l+1);
}
//第一种解决方案
void genknuth(int m, int n)
{
int i;
for(i=0; i<n; i++){
if(bigrand() % (n-i) < m){
printf("%d ",i);
m--;
}
}
printf("\n");
}
//第二种解决方案
void gensets(int m, int n)
{
set<int> S;
set<int>::iterator i;
while(S.size() < m){
S.insert(bigrand()%n);
}
for(i=S.begin(); i!=S.end(); i++){
printf("%d ", *i);
}
printf("\n");
}
//第二种方案的Floyd改进
void genfloyd(int m, int n)
{
int j, t;
set<int> S;
set<int>::iterator i;
for(j=n-m; j<n; j++){
t = bigrand() % (j+1);
if(S.find(t) == S.end()){
S.insert(t);
}
else{
S.insert(j);
}
}
for(i=S.begin(); i!=S.end(); i++){
printf("%d ", *i);
}
printf("\n");
}
//第三种解决方案
void genshuf(int m, int n)
{
int i, j;
int *X = new int[n];
for(i=0; i<n; i++){
X[i] = i;
}
for(i=0; i<n; i++){
j = randint(i, n-1);
int t = X[i];
X[i] = X[j];
X[j] = t;
}
sort(X, X+m);
for(i=0; i<m; i++){
printf("%d ", X[i]);
}
printf("\n");
}
int main()
{
int m, n;
printf("输入m和n(m是随机数个数,n是随机数范围):\n");
scanf("%d %d", &m, &n);
printf("第一种解决方案:\n");
genknuth(m, n);
printf("\n第二种解决方案:\n");
gensets(m, n);
printf("\n第二种解决方案的floyd改进:\n");
genfloyd(m, n);
printf("\n第三种解决方案:\n");
genshuf(m, n);
return 0;
}