多私钥生成器(PKG)环境下的实用的基于身份的加密
王圣宝1,2*,曹珍富3,谢琪1和刘文豪1
1杭州师范大学信息科学与工程学院,中国杭州
2北京邮电大学网络与交换技术国家重点实验室,中国北京
3上海交通大学计算机 科学与工程系,中国上海
摘要
本文中,我们提出了一种使用双线性对的新基于身份的加密(IBE)方案。与著名的Boneh和Franklin的IBE 方案相比,我们的方案在多私钥生成器(多PKG)环境中更加实用。我们证明了在随机预言模型下,假设标准 双线性Diffie‐Hellman问题难以解决,该方案具有选择密文安全性。版权所有©2013约翰威立父子有限公司
关键词
基于身份的加密(IBE);自组织网络;公钥加密(PKE);双线性对
*通讯 王圣宝,中国杭州杭州师范大学信息科学与工程学院。电子邮件:shengbaowang@gmail.com
引言
自组织网络中的安全问题在多年研究后仍持续受到关 注。基于身份的密码学的最新进展为这一问题提供了 新的思路,并逐渐成为一种流行的解决方案基础[1]。
基于身份的密码学概念最早由Shamir在 1984[2,3]中 提出。基于身份的密码系统的基本思想是,终端用户 可以选择任意字符串(例如他们的电子邮件地址或其 他在线标识符)作为其公钥。相应的私钥通过将身份 与可信机构的主私钥绑定生成(称为私钥生成,简称 私钥生成器,PKG)。这大大减少了密钥管理相关的 开销。
2001年,Boneh和Franklin[4]首次利用椭圆 曲线上的双线性配对给出了基于身份的加密(IBE) 的第一个完全可行的解决方案。基于配对,酒井和幸 和笠原正治在 2003[5]中提出了另一种IBE(简称 SK‐IBE)方案。然而,其在某些场景下(例如分层 IBE[6]和门限解密[7])的适用性无法与Boneh– Franklin方案(简称BF‐IBE)相比。因此,近年来 BF‐IBE方案受到了更多的关注。
1.1.多PKG环境中的基于身份的加密
尽管基于身份的加密(IBE)消除了传统公钥基础设 施中与密钥管理相关的大部分开销,但在实际部署身 份基加密方案时,建立一个单一的全球私钥生成器 (PKG)是不现实的,这主要是由于固有的密钥托管 问题,即PKG掌握其所有用户的私钥。应用身份基加 密方案的另一个困难在于分发私钥时需要在PKG与其 用户之间建立安全通道。因此,为了应用身份基加密 方案并同时缓解上述两个问题,每个管理域(例如, 相对较小且关系紧密的组织,如大学)将设立自己的 域PKG,该域PKG仅负责为本域/组织内的用户生成 和分发私钥。另一方面,随着互联网和电子商务的发 展,经常出现某一域内的用户需要与其他域用户进行 安全通信的需求。我们将这种基于身份的加密方案的 实际应用场景称为多PKG环境。
要使一个基于身份的加密方案适用于多私钥生成 器环境,所需的是由全球可信第三方运行的全局设置 过程G‐Setup,该过程生成并发布由支持配对的全局 参数params组成的标准全局参数。
安全与通信网络安全通信网络2015;8:43–502013年3月18日在线发布于Wiley在线图书馆(wileyonlinelibrary.com)。DOI:10.1002/sec.743
版权所有©2013约翰威立父子有限公司 43
本文档由funstory.ai的开源PDF翻译库BabelDOCv0.5.10(http://yadt.io)翻译,本仓库正在积极的建设当中,欢迎star和关注。
曲线、可接受的双线性配对、公共群生成元点P以及 其他常见的密码学工具,例如哈希函数和编码算法。 我们注意到这是一个相当合理的要求。事实上,椭圆 曲线、合适的群生成元点以及其他密码学工具已经在 非基于身份的加密应用中被标准化,例如美国国家标 准与技术研究院联邦信息处理标准[8]。一旦这些全局 参数params被确定,每个域PKG只需生成自己的主 私钥,并使用全局参数params计算相应的主公钥。
例如,教育部可以作为全国所有大学的可信第三方, 而每所大学将设立自己的域PKG,为其教师和学生生 成并分发私钥。
本文中,我们提出了一种使用双线性对的新基于 身份的加密(IBE)方案。我们证明了该方案在多个 私钥生成器(PKG)环境中更具实用性。该新的IBE 方案(以下简称M‐IBE,代表多PKGIBE或改进的 BF‐IBE)与BF‐IBE方案具有相同的设置和解密算法, 但在密钥提取和加密算法上有所不同。M‐IBE方案在 随机预言模型下是可证明安全的,其安全性基于标准 的双线性Diffie‐Hellman(BDH)问题[4]的困难性。
1.2.论文结构
本文的其余部分组织如下。在下一节中,我们给出多 PKG环境下双线性对、相关复杂性假设和基于身份的 加密方案所需的定义,以及基于身份的加密方案的相 关安全定义。在第3节中,我们描述了新的基于身份的 加密方案——M‐IBE方案,并在多PKG环境下将其与 BF‐IBE方案[4,9] 进行比较。在第4节中,我们证明 了新M‐IBE方案的选择密文安全性可归约到标准的 BDH假设。最后,第5节给出了简要的结论。
2.预备知识
2.1.配对和修正的双线性Diffie‐Hellman假设
在本节中,我们将以更一般的形式描述配对的基本定 义和性质:更多细节可在[4]中找到。
设G1是由元素P生成的循环加法群,其阶为素数 p,G2 是具有相同素数阶p的循环乘法群。我们假设 在G 1 和G 2 中的离散对数问题都是困难的。
定义1.配对
一个可接受的配对e是一个双线性映射e: G1 G1! G2,,满足以下三个性质:
1.双线性:若P;Q∈G1 且a;b∈Z p,则e(aP, bQ)= e(P,Q)ab;
2.非退化:e(P,P)6¼ 1;
3.可计算:若P;Q∈G1,,则可以在多项式时间内计算 e(P,Q)ð Þ 2 G2。
通常,映射e将源自有限域上椭圆曲线的韦伊或 Tate配对。有关在实际中如何选择这些群、配对及其 他参数以实现效率和安全性的更全面描述,请参见 [10,4,9,11]。
定义2.(BDH参数生成器) 。如[4],所述,我们称一 个随机算法IG为BDH参数生成器,如果 IG以安全 参数k> 0作为输入,在k的多项式时间内运行,并输 出两个具有相同素数阶q的群G1和G2的描述,以及一 个可接受的配对e: G1 G1! G2的描述。
定义3.(BDH问题) 。设G1, G2, P,以及e如前所述。在 h G1;G2;ei中的BDH问题如下:给定 hP,aP,bP,cPi,其中 a;b;c∈Z q为均匀随机选择,计算eP;Pð Þabc 2 G2。
我们新的基于配对的IBE方案的安全性依赖于前 述BDH问题的困难性。然而,为了简化我们证明过程 的表述,将使用以下等效形式的BDH问题,即所谓的 改进的BDH问题[12]。改进的BDH问题与BDH问题 相同,只是输出为eP;Pð Þa 1 bc(而不是e(P,P)abc)。
定义4.MBDH问题[12] 设G1, G2, P,以及e如前所述。在 h G1;G2;ei中的MBDH问题如下:给定 hP,aP,bP,cPi, 其中a;b;c∈Z q 为均匀随机选择,计算eP;Pð Þa 1 bc2 G2。
实值函数f(l)如果对于任意整数k,当l足够大时| f(l)| < l k,则称其为可忽略的。以下MBDH假设大致 指出,该问题在计算上是不可行的。
定义5.(MBDH假设) 。如[4],中所述,若 IG是 一个BDH参数生成器,则算法B在解决MBDH问题上 的优势AdvIG ð BÞ定义为:当算法的输入为G1;G2;e; P;aP;bP;cP时,该算法输出e(P,P)ð Þa 1 bc 2G2 的概率,其中 hG1;G2;ei是 IG对于足够大的安全参 数k的输出,P为随机元素 G1,的生成元以及a;b;c∈Z q。MBDH假设是指对于所有 高效算法B,AdvIG ð BÞ是可忽略的。其中,概率是基于a; b;c∈Z q的随机选择以及算法B的随机比特来衡量的。
BDH假设可以类似地定义。在[13],中,卡内蒂和 霍恩伯格证明了这两个假设的判定性变体是等价的。 通过使用相同的归约技术,我们证明了MBDH和 BDH假设是等价的。
引理1. 如果在hG1;G2;ei中以概率e可解MBDH问题, 则在 hG1;G2;ei中以相同概率也可解BDH问题,反 之亦然。
证明.(BDH假设 ⇒ MBDH假设。) 对于BDH输入 hP,aP, bP,cPi,在输入 hbP,P,cP,aPi= hQ,xQ,yQ,zQi上向 MBDH问题求解器进行查询,并输出其响应。观察到MBDH求 解器将输出eQ;Qð Þx1 yz;通过代换,我们得到eQ;Q ð Þx1 yz¼ebP;bPð Þbð c=Þ bð a=Þ ¼ beP;Pð Þabc作为 BDH求解器的输出。
(MBDH假设 ⇒ BDH假设。)省略。□
2.2.多PKG环境中的基于身份的加密定义
我们在多私钥生成器(PKG)环境下的基于身份的加 密(IBE)方案的定义与Boneh和Franklin[4,9]的定 义略有不同,即多了一个额外的全局化简初始化算法 G‐Setup,该算法负责生成全局共识参数params。
定义6.多PKG环境中的基于身份的加密 一个在多 PKG环境中处理长度为(其中为多项式有界函数)的 身份的身份基加密方案由五个多项式时间算法指定:
G‐Setup :这是一个由全球可信第三方运行的概率算法, 以安全参数作为输入,输出全局公共参数params。
设置 :这是由域私钥生成器运行的一种概率算法,用 于输出域的主公钥/私钥对(PPub是其主公钥,msk是 其主私钥)。
密钥提取 :这是由域私钥生成器运行的密钥生成算法, 输入为主私钥msk和用户的身份ID,输出为用户的私 钥dID。
加密 :这是一个概率性算法,其输入为明文M、全局 公共参数params、接收者的身份ID以及指定域私钥生 成器的主公钥P Pub ,输出为密文C。
解密 :这是一个确定性解密算法,以密文C和私钥d ID 作为输入 返回明文M,如果C不是有效密文,则返回一个特殊符号 ⊥。
多PKG环境中基于身份的加密方案的安全性由 挑战者 C 和攻击者 A之间进行的以下游戏定义,该 游戏几乎与[4]中形式化的游戏相同。
设置 。 C接收安全参数k,并运行G‐Setup和初始化算 法。它输出全局公共参数params和域主公钥PPub,同 时将msk保密。
查找阶段
。 A提出以下类型的查询之一:
•对IDi的密钥提取查询。 C运行密钥提取算法生成 dIDi,并将其传递给 A。
•对(IDi,Ci)的解密查询。 C通过首先查找dIDi(如有必要,可通过运行密钥 提取算法)然后运行解密算法来解密密文。它返回 得到的明文Mi。
挑战 。一旦 A决定第一阶段结束,它将输出两个等长 的明文M0和M1,以及一个身份ID*(称为挑战身份), 表示希望对该身份进行挑战。唯一的限制是 A在第一 阶段中不得对ID*进行过提取查询。C随机选择一位比 特t∈{0,1},并设置C*=为Encrypt(ID*,Mt)的输出。 然后将C*作为挑战发送给 A。
猜测阶段 。A继续提出更多查询,如阶段1所示,但有两个 限制:(i)不能对ID*发起提取查询;以及(ii)不能对(ID*,C*)发起解密查询。
输出 。最后, A输出一个猜测t0 2{0,1},如果t0=t,则 赢得游戏。
我们将这类攻击者称为不可区分性‐身份‐选择密文 攻击(IND‐ID‐CCA)攻击者[4,9]。如果 A无法提出 解密查询,则称其为IND‐ID‐选择明文攻击(CPA) 攻击者。攻击者 A针对基于身份的加密方案的优势是 关于安全参数k的函数,定义为
AdvA ð kÞ ¼ Pr t0 ¼ t ½ 1=2 j j:
定义7.IBE安全性 :如果对于任意IND‐ID‐CCA( IND‐ID‐CPA)攻击者,AdvA kð Þ是可忽略的,则该IBE 方案是IND‐ID‐CCA安全的(IND‐ID‐CPA)。
3.提出的身份基加密方案
现在我们描述我们的M‐IBE方案——一种在多PKG环境下的实 用基于身份的加密方案。与[ 9 ] ,中的研究思路相同,我们首先 给出该方案的一个基本版本,该版本仅具有CPA安全性。然后, 我们将该基本方案进行扩展,以获得对自适应CCA的安全性 随机预言模型[14],,使用第二个藤崎‐冈本变换[15]。
3.1.具有CPA安全性的基本方案
基本M‐IBE方案的工作方式如下。
G‐Setup
。给定安全参数k,全球可信第三方执行以下操 作:
(1)输出两个素数阶p的群G1和G2,一个双线性配对e: G1 G1! G2,,以及群G1的生成元P。
(2)选择一个密码 学哈希函数H1: 0; 1 f g! G 1和另一个密码学哈希函数 H 2: 2! 0 G; 1 f gn,其中n为某值。 消息空间是 M ¼ 0; 1 f gn。密文空间是C ¼ G 1 0; 1 P;n;H1;H2i。
设置
。每个域私钥生成器执行以下操作:
(1)选择一个随机的s∈Zp。
(2)计算PPub ¼sP∈G1。 域主公钥为PPub,主私钥msk为s。
密钥提取 。为了为身份ID2{0,1}*生成私钥,域 PKG首先计算QID ¼ H1 IDð Þ 2 G 1,然后将私钥dID 设置为dID= s 1QID,其中s是主私钥。‡
加密
。要加密消息m 2 M,发送方随机选择一个r2Zp, 并使用接收方的身份ID计算QID ¼ H1 IDð Þ 2 G 1,然后将 密文设置为
C ¼ hrPPub; mH2 g r ID i; where gID ¼ e P; QID ð Þ 2 G 2 :
解密
。该算法与BF‐IBE中的算法相同。使用身份ID 的私钥dID对密文C= hU,Vi2 C进行解密计算
m ¼ VH2 e U; dID ð Þ ð Þ:
一致性
:接收者可以正确解密C以获得m
e U; dID ð Þ ¼ e rsP; s 1 QID ¼ e P; QID ð Þr:
3.2.具有CCA安全性的完整方案
在本小节中,我们利用Fujisaki和Okamoto提出的通 用转换方法[15],将前述基本方案扩展为具有适应性 选择密文安全性的完整基于身份的加密方案。
我们从[16]中借用该转换的描述。这种转换从一个 IND‐CPA加密方案出发,在随机预言模型下构建出一个 IND‐CCA方案。如果我们用Epk(M,r)表示在公钥pk下使 用随机比特r对消息M进行加密,其中消息集合M={0, 1}n,随机数集合为R,密文集合为C,则新的转换方案为
Ehy pk ðM Þ ¼ Epk Mjjr; H Mjjr Þ Þ;
其中Mjjr20; 1 f gnk0 0; 1 R是一个哈希函数。要解密密文C,首先使用原始解密 算法获得M0 r0,然后验证Epk(M0 r0, H(M0 r0))=C 是否成立。若成立,则输出M;否则,输出拒绝符号。
现在我们描述由此得到的完整M‐IBE方案。
G‐Setup
。给定一个安全参数k,全局可信第三方执行 以下操作:
(1)输出两个素数阶p的群G1和G2,一个双线性配 对e: G1 G1! G2,,以及群G1的生成元P。
(2)选 取三个密码学哈希函数H1: 0 1 f g!;G 1和H2: G2! 0; 1 f gn(对于某个n)以及H3: 0; 1 f g! Z p 。
消息空间是 M ¼ 0; 1 f gnk 0。密文空间是C ¼ G 1 0; 1 n;k0;H1;H2;H3i。
设置 。该算法与基本M‐IBE方案中的相同。
密钥提取 。该算法与基本M‐IBE方案中的算法完全相同。
加密
。要加密消息m 2 M,发送方随机选择一个s20; 1 f gk 0,利用接收方的身份ID计算QID ¼ H1 IDð Þ 2 G 1 ,设置r ¼ H3 m;sð Þ2 Z p ,最后将密文设置为
C ¼ hrPPub ; mjjs ð ÞH2 g r ID i; where gID ¼ e P; QID ð Þ 2 G 2 :
解密 。该算法与Galindo的BF‐IBE变体[16]中的算法 相同。使用身份ID的私钥d ID 来解密密文C ¼hU;V i 2 C,操作如下: ‡ 注意,在BF‐IBE [ 4,9 ] ,中,用户的私钥被计算为d ID = sQ ID 。
3.3.多私钥生成器环境下的身份基加密方案比较
现在我们将新的M‐IBE方案与BF‐IBE方案[4]进行比较, 以表明我们的方案在多私钥生成器环境中更具实用性。
正如我们在第1节中指出的,在基于身份的加密方 案(即多PKG环境)的实际应用环境中,用户向不同 管理域的用户加密消息是很正常的情况。例如,对于 大学A的学生Alice来说,她可能需要向来自大学B的 Bob、来自大学C的Carol,或其所属大学目前Alice 尚不知道的Emmy加密消息(但请注意,Alice已经知 道Emmy的身份信息)。
现在我们将我们的新基于身份的加密方案与 BF‐IBE方案[4]在多PKG环境中进行比较。首先,两 种方案中每个域PKG运行的初始化算法相同,生成相 同长度的主公钥。其次,两种身份基加密方案中的解 密算法也相同,所需的计算开销一致。接下来,我们 讨论在实际应用中,特别是在多PKG环境中,我们不 同的加密算法和密钥提取算法可能带来的意义。
在BF‐IBE[4], 中,会话密钥,即项gr ID,被计 算为gr ID ¼ eP Pub ID ð Þr;;Q,其中PPub 是预期接 收者所属私钥生成器的主公钥。因此,在多PKG环 境中,在计算项gr ID(这需要进行相对昂贵的配对计 算,是整个加密过程的主要操作)之前,BF‐IBE方 案要求加密方必须首先获知以下两点:
•收件人所属的域/组织
•与收件人的域PKG相关联 的主公钥
与BF‐IBE方案相比,我们的M‐IBE方案最大的区 别在于其加密算法中对项g r ID ¼ eP;Q ID ð Þr的计算 独立于任何私钥生成器(PKG)的主公钥P Pub 。因此, 在M‐IBE方案中,加密方可以在获取接收方所属 PKG的主公钥之前就计算配对。有趣的是,加密方甚 至可以在尚未知晓接收方所属域/组织的情况下预先计 算gID 。
因此,我们的方案在多PKG环境中实现了一种高 效的“移动中”身份基加密方案, 这要求发送方(即加密者)的在线工作量非常小。我 们注意到,这一特性在(基于身份的)广播(或多接 收者)加密场景中尤其有用[17],即通过预先计算大部 分昂贵的运算,整体性能将在很大程度上得到提升。
表I总结了我们的M‐IBE方案与BF‐IBE方案的比 较。这两种基于身份的加密方案具有相同的性能特征 (例如,相同的总体计算开销、主公钥长度和密文长 度)以及相同的安全强度(我们将在下一节中证明, 我们M‐IBE方案的IND‐ID‐CCA安全性也可以归约到 BDH假设)。然而,我们的M‐IBE方案相较于 BF‐IBE方案有一个显著优势,即其加密算法中的主导 操作(即配对计算)可以预先计算(即离线计算,或 在查询指定域的主公钥之前完成计算)。总之,在多 私钥生成器环境中,我们的M‐IBE比BF‐IBE方案更实 用。
表I.M‐IBE与BF‐IBE的比较。
| 方案 | 项目 | 私钥 | gID | 假设 |
|---|---|---|---|---|
| BF‐IBE[4] | sQ ID | e(PPub,QID) | BDH | |
| M‐IBE | s1QID | e(P,QID) | BDH |
BDH,双线性Diffie‐Hellman;BF‐IBE,博内‐富兰克林基于身份的加 密;M‐IBE,多私钥生成器基于身份的加密。
4. M‐IBE的安全性证明
现在我们评估我们的M‐IBE方案的安全性。我们证明, 与原始的BF‐IBE方案[4,9]以及改进的BF‐IBE方案[16], 一样,M‐IBE方案的安全性也可以归约到BDH问题的 困难性上。该归约过程类似于BF‐IBE的证明[9],但 我们将考虑Galindo发现的归约误差[16]。
我们沿着[9,16]中的类似思路证明了我们的基于身份 的加密方案的安全性。该证明分三个步骤完成,可简要 概括如下:(i)首先,我们证明如果存在一个 IND‐ID‐CCA攻击者,能够通过发动安全模型中定义的自 适应CPA攻击来攻破该基于身份的加密方案,则必然存 在一个IND‐CCA攻击者,能够以自适应CPA攻击方式攻 破引理中定义的BasicPubh y方案;(ii)其次,如果存 在这样的IND‐CCA攻击者,则我们在引理中表明,必然 存在一个IND‐CPA攻击者能够攻破相应的BasicPub方案; (iii)最后,在引理中,我们证明如果BasicPub方案无 法抵御IND‐CPA攻击者,则相应的MBDH假设不成立。
我们首先定义相关的非基于身份的公钥加密方案 BasicPub。它由三个算法描述:密钥生成、加密和解密。
密钥生成
。给定安全参数k,用户执行以下操作:
(1)选择一个随机数s∈Zp 并计算P0 ¼ sP∈G1。
(2)选取一个随机的Q0 2∈G 2。
(3)选取一个密码学 哈希函数H2::G2! 0→ 1 f gn,其中n为某值。 消息空间是 M ¼ 0; 1 f gn。密文空间是C ¼ G 1 0; 1 H2i,私钥是d0 ¼s1Q0 2G 1。
加密
。要加密消息m 2 M,发送方随机选择一个r 2Zp,并将密文设置为
C ¼ hrP0; mH2 gr ID i; where gID ¼ e P; Q0 ð Þ 2 G 2:
解密
。使用私钥d0,解密密文C ¼ hU;Vi 2 C,我们进 行如下计算
m ¼ VH2 e U; d0 ð Þ ð Þ:
前述公钥加密方案的正确性可以轻松验证。我们 将藤崎‐冈本变换应用于BasicPub的完整方案称为 BasicPubhy。
引理2 。设A是针对完整身份基加密方案的I ND‐ID‐CCA攻击者,其优势为e,最多进行qE次私钥提 取查询、qD次解密查询和q1次哈希查询。则存在一个 IND‐CCA攻击者 B,其对BasicPub的优势至少为e/q1( 1qE/q1) e/q1。其运行时间为tB≤tA + cG1 q D + 1 ð Þ E + qq,其中cG1表示在G1中计算一次随机乘 法所需的时间。
证明 。采用与[16]中结果5类似的归约方法,以及拉 尔和夏尔马提出的用于模拟H1随机预言机的新技术 [18], ,我们给出如下证明。
我们展示如何通过使用针对完整M‐IBE方案的 IND‐ID‐CCA攻击者A来构建一个针对BasicPubh y的 IND‐CCA攻击者 B。设e表示 A的优势。算法 B从其 挑战者处接收到公钥 hp;G1 ;G2 ;e;P;P 0 ;Q0 ;n;k 0 ;H 1 ; H 2 ;H 3i ,然后 B按如下方式为 A模拟挑战者。
设置 。B给出参数A hp;G 1 ;G 2 ;e;P;n;k 0 ;H 1 ; H 2 ;H 3i 作为全局公共参数 参数并将主公钥PPub 设置为P0, ,其中H1 是由 B 控制的预言机,如下所示:
H1查询
。为了响应这些查询,算法 B维护一个包含元组 h IDi,Qi,bi i的列表Hlist 1 。在初始化该列表之前, B随机选择 一个j2{1,…,q1}。当 A对IDi进行H1查询时, B按如下方 式处理:
如果i6¼j,它随机选取一个bi 2 Z p,设置Qi= biP0,, 将 hIDi、Qi、bii添加到列表中,并向 A返回Qi。
•否则(即i= j),它设置Qj= Q0,,将 hIDi、Qi、♠ i添 加到列表中,并将Qj 提供给 A。这里,♠表示一个特 殊符号。如[16], 所述,Q0 对 A是未知的,并且在G1 中均匀分布;因此,H1的输出在G1中均匀分布,并且 独立于A的当前视图。
查找阶段
。 A提出以下类型的查询之一:
•
提取查询
. 当 A请求IDi的私钥时, B执行相应H1查询 的算法,并得到H1(IDi)= Qi,其中 hIDi、Qi、bii 是Hlist l中的对应条目。
•如果i=j,则 B中止游戏,对BasicPubhy的 攻击失败。(事件E1)
•否则, B设置di=biP并将 di发送给 A。
•
解密查询
。 B对解密查询hIDi,Cii 按如下方式响应。它运行一个H1查询算法,并令 h IDi、Qi、bii为Hlist l中的对应条目。
•如果i6¼j,则 B检索私钥di并使用解密算法解密Ci。 B将解密后 的消息返回给 A。
•否则, B请求其挑战者解密 Cj并将结果转发给A。(注意:如果i=j,则Qi6¼ Q0,,且 hIDj、Cji的解密与通过BasicPubj对Chy 的解密相同。)
挑战
。一旦 A决定阶段1(即查找阶段)结束,它将 输出两个等长的明文M0和M1,以及一个希望被挑战 的身份ID*。算法 B按如下步骤进行。
•如果i6¼j,则 B终止游戏,对BasicPubh y的攻击失 败。(事件E2)
•否则, B向其自身的挑战者发送 M 0 , M1 ,并收到密文C*——即在BasicPubt下针对随 机比特t2{0,1}对Mh y的加密结果。 B将C转发给A, 该密文也是在完整M‐IBE方案下针对标识符ID*对 Mt的加密结果。
猜测阶段 。 A提出更多查询, B的处理方式与第一 阶段相同。回顾游戏规则, A有两个限制:(i)不能对 ID*发起提取查询;以及(ii)不能对(ID *,C* )发起解密 查询。
输出 。最后, A输出一个关于t的猜测t0 2{0,1}。 B 将其猜测t0转发给其挑战者。
在上述模拟中,H1的行为类似于随机预言机,且提取以及 解密查询均有效;因此,若 B在模拟过程中未中止(即事件 E1和E2均未发生),则A的视角与真实攻击中的视角完全相同。 因此,我们有|Pr[t0=t]1/2| ≥e,该概率是相对于A、 B 以及 IND‐ID‐CCA游戏挑战者的随机比特而言的。
现在我们评估模拟不中止的概率。我们有
Pr B does not abort ½ ¼ Pr:E1∧:E2 ½ ¼ Pr:E2:E1 j Pr:E1 ½ :
与[16],中类似,我们可以得到Pr[E1]≥qE/q1,的 一个上界,即在查找阶段向IDj发起提取查询的 A的 概率,因为此类查询的最大次数为qE。另一方面, Pr[⌐E2|⌐E1],(即 A选择IDj作为挑战身份的概率) 的下界为1/q1。因此,
Pr B does not abort ½ ≥ 1 q1 1 qE=q1 ð Þ:
这意味着B的优势至少为e/q1(1qE/q1)。□
引理3 。设 A是针对BasicPubhy的一个IND‐CCA攻击 者,其优势为e,最多进行qD次解密查询和q2次哈希查 询。则存在一个IND‐CPA攻击者 B,其对BasicPubhy 的优势至少为e 0 1 ð Þ 1 1= 22 qkpð ÞqD e。 其运行时间为tB≤tA + q2 T BasicPub + ð Þlogp,其中T BasicPub是BasicPub中加密算法的运行时间。
证明 。该结果是通过应用Fujisaki‐Okamoto>变换 得到的,其证明可在[15]中找到。□
引理4 。设 A是针对BasicPub的一个IND‐CPA攻击者, 其优势为e,并且最多对H2进行q2次查询。则存在一 个算法 B,其在求解BDH问题上的优势至少为2e/q2。 该算法的运行时间为tB ¼Oðt AÞ。
证明
。见附录A。□
现在我们准备陈述我们完整的IBE方案的安全性。
定理1
。如果G 1 ð Þ 2 ;;G;e上的BDH问题具有(t,qH ,qD , e)‐安全性,则所提出的完整M‐IBE方案是(t,qH ,qD ,e)‐安全的。
t + cG 1 2qD + qH ð Þ + qH O log 3 p + logp ; e=q 2 H Þ-secure:
证明 。这直接由引理2、3和4得出。□
5.结论
在本文中,我们提出了一种新的基于身份的加密方案, 该方案在随机预言模型下可被证明是安全的。其安全性 基于标准的BDH假设。我们证明了在多私钥生成器环境 中(这在自组织网络中很常见),新方案比著名的 Boneh和Franklin的基于身份的加密方案更加实用。
20

被折叠的 条评论
为什么被折叠?



