灵感来源
- 保持更新,努力学习
- python脚本学习
二叉树的最大深度
解题思路
这道题要求计算二叉树的最大深度,即从根节点到最远叶子节点的最长路径上的节点数。可以使用递归或迭代方法解决:
-
递归法(推荐):
- 每个节点的最大深度等于其左右子树深度的最大值加 1(当前节点自身)。
- 递归终止条件:空节点的深度为 0。
class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def maxDepth(root: TreeNode) -> int: if not root: return 0 left_depth = maxDepth(root.left) right_depth = maxDepth(root.right) return max(left_depth, right_depth) + 1
-
迭代法(层序遍历):
- 使用队列进行层序遍历(BFS),每遍历一层深度加 1。
- 每层处理完后,队列中恰好剩下下一层的所有节点。
from collections import deque class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def maxDepth(root: TreeNode) -> int: if not root: return 0 queue = deque([root]) depth = 0 while queue: # 当前层的节点数 level_size = len(queue) for _ in range(level_size): node = queue.popleft() if node.left: queue.append(node.left) if node.right: queue.append(node.right) depth += 1 return depth
逐行解释
递归法
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val # 当前节点的值
self.left = left # 左子节点
self.right = right # 右子节点
def maxDepth(root: TreeNode) -> int:
# 递归终止条件:如果当前节点为空,深度为0
if not root:
return 0
# 递归计算左子树的最大深度
left_depth = maxDepth(root.left)
# 递归计算右子树的最大深度
right_depth = maxDepth(root.right)
# 当前节点的最大深度为左右子树深度的最大值加1(包含当前节点)
return max(left_depth, right_depth) + 1
迭代法
from collections import deque
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val # 当前节点的值
self.left = left # 左子节点
self.right = right # 右子节点
def maxDepth(root: TreeNode) -> int:
# 如果根节点为空,树的深度为0
if not root:
return 0
# 使用双端队列存储待处理的节点,初始时队列包含根节点
queue = deque([root])
depth = 0 # 初始化树的深度为0
# 循环处理队列中的所有节点,直到队列为空
while queue:
# 当前层的节点数量(即队列的当前长度)
level_size = len(queue)
# 处理当前层的所有节点
for _ in range(level_size):
# 从队列左侧取出一个节点进行处理
node = queue.popleft()
# 如果该节点有左子节点,将左子节点加入队列
if node.left:
queue.append(node.left)
# 如果该节点有右子节点,将右子节点加入队列
if node.right:
queue.append(node.right)
# 处理完一层后,树的深度加1
depth += 1
# 返回最终计算的树的最大深度
return depth