Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
状态d[i][j]表示i时刻在坐标j出最多能接到的馅饼数。
状态转移方程:
d[i][j] = Max(d[i+1][j-1],d[i+1][j], d[i+1][j+1]) + d[i][j].
最后d[0][5]即为所求结果。
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1176
#include<cstdio>
#include<cstring>
#include<iostream>
#define M 100000+10
using namespace std;
int d[M][12]; /*d[i][j]表示在i时刻落在j点的馅饼数量*/
int maxof2(int x, int y){
return (x>y )? x:y;
}
int maxof3(int x, int y, int z){
int mmax=(x>y) ? x:y;
return (mmax>z) ? mmax:z;
}
int dp(int max_time){
int i,j;
for (i = max_time - 1; i >= 0; --i){
d[i][0] = maxof2(d[i+1][0], d[i+1][1]) + d[i][0];
for (j = 1; j <=9; ++j){
d[i][j] = maxof3( d[i+1][j-1], d[i+1][j], d[i+1][j+1] ) + d[i][j];
}
d[i][10]=maxof2(d[i+1][9], d[i+1][10])+d[i][10];
}
return d[0][5];
}
int main(){
int n;
while(scanf("%d",&n)!=EOF && n){
int location, time;
int max_time=-1;
memset(d,0,sizeof(d));
for(int i=1; i<=n; ++i){
scanf("%d%d", &location, &time);
++d[time][location];
if(max_time<time)
max_time=time;
}
//printf("max_time=%d\n",max_time);
printf("%d\n",dp(max_time));
}
return 0;
}