n宫格:奇数阶宫格,使用1-n×n填入其中,使得每一行、每一列、正斜线和反斜线上每n个数的和都相等。
解法:使用网上已有算法,具体见附录。
public class N_nine {
public static void main(String[] args){
solution(5);
}
public static void solution(int n){
int[][] nine=new int[n][n];
if(n%2==0){
System.out.println("偶数格无法求解!");
return;
}
int i,j;
i=0;j=n/2;
int step;
for(step=1;step<=n*n;++step){
nine[i][j]=step;
//System.out.println(i+" "+j+" step: "+step+" nine:"+nine[i][j]);
i=i-1;
j=j+1;
if(i==-1 && j==n){
i=i+2;
j=j-1;
}
if(i==-1){
i=n-1;
}
if(j==n){
j=0;
}
if(nine[i][j]!=0){
i=i+2;
j=j-1;
}
}
for(int ii=0;ii<n;++ii){
for(int jj=0;jj<n;++jj){
System.out.print(nine[ii][jj]+" ");
}
System.out.println();
}
}
}
九宫格题解法(此方法同样适用于二十五宫格
四十九宫格、八十一宫格)
九宫格涉及的数字少,怕讲不清楚,现以二十五宫格为例,讲解此类题的做法:
例题:请把1—25个数字放入下列空格中,要求做到横、纵、斜角相加均等于65
(所给的数字如有负数或没有按顺序排列,请先把数字按从小到大的顺序进行排列)
第一步:最小的数必须放在最上一行的最中间格。
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
第二步:第二小的数必须放在最小数所在列右列的最下格。
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
第三步:往右上格填写第三小的数,只要碰到最右列壁,就将下一个数填入上一行的最左侧格(如3碰到最右列壁后,4则填在上一行的最左侧格)。后面以此类推。
|
| 1 |
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
| 3 |
|
|
| 2 |
|
第四步:若右上方有格就一直填下一个数字,若右上方有数字就在上一个数字的下一格填下一个数,(如下图4的右上方有空格就填5,如5的右上方有空格就填6,但1早占了5右上格的位置,因此6就填在5的下一格)。后面以此类推。
|
| 1 | 8 |
|
| 5 | 7 |
|
|
4 | 6 |
|
|
|
|
|
|
| 3 |
|
|
| 2 |
|
第五步:在最上行碰壁后,下一个数要填入右列的最下格(如2、9的填法)。后面以此类推。
|
| 1 | 8 |
|
| 5 | 7 |
|
|
4 | 6 |
|
|
|
|
|
|
| 3 |
|
|
| 2 | 9 |
第六步:重复前面的规律。
|
| 1 | 8 | 15 |
| 5 | 7 | 14 |
|
4 | 6 | 13 |
|
|
10 | 12 |
|
| 3 |
11 |
|
| 2 | 9 |
第七步:右上角的下一个数,必定在其下一格。如16必定在15的下一格。
|
| 1 | 8 | 15 |
| 5 | 7 | 14 | 16 |
4 | 6 | 13 |
|
|
10 | 12 |
|
| 3 |
11 |
|
| 2 | 9 |
第八步:还是重复前面的规律。
17 | 24 | 1 | 8 | 15 |
23 | 5 | 7 | 14 | 16 |
4 | 6 | 13 | 20 | 22 |
10 | 12 | 19 | 21 | 3 |
11 | 18 | 25 | 2 | 9 |
此类题的规律:
1、最小值永远在最上行的中间格,最大值永远在最下行的中间格。
2、最上行碰壁,下一个数填入右列最下格。
3、最右列碰壁,下一个数填入上一行最左格。
4、右上格有空就一直填下一个数;右上格有数,就将下一个数字填入上一个数的下一格。
5、右上角的下一个数,必定在其下一格;左下角的上一个数,必定在其上一格。
不知道讲明白没有。如果看懂了大家不妨用这个方法试试填9宫格、49宫格、81宫格。