SPSS数据建模与可视化全解析
1. 模型结构调整与比较
在数据分析中,我们可以对数据拟合线性回归模型。具体操作如下:
1. 删除“随机效应”项中的两个随机效应块。
2. 点击“运行”。
3. 在输出查看器中双击模型对象。
我们可以使用信息准则值来比较不同模型。以线性混合模型和线性回归模型为例,基于信息准则(AICC和BIC),具有两个随机截距的线性混合模型更优,因为它的AICC(14207.795 vs. 14461.699)和BIC(14224.768 vs. 14467.329)值更小。
此外,线性回归模型的残差效应方差估计比线性混合模型大。而且,两个模型中预测变量的固定系数估计差异很大,这会导致对这些效应的解释不同,甚至在某些情况下,一个模型中的效应显著,而在另一个模型中不显著。如果不使用分层线性模型,可能会得出不同(错误)的结论。
| 模型类型 | AICC值 | BIC值 | 残差效应方差估计 |
|---|---|---|---|
| 线性混合模型 | 14207.795 | 14224.768 | 较小 |
| 线性回归模型 | 14461.699 | 14467.329 | 较大 |
超级会员免费看
订阅专栏 解锁全文
3871

被折叠的 条评论
为什么被折叠?



