题解-摆花

本文介绍了一道动态规划问题,小明的花店需要按特定规则摆放花朵,求解不同摆放方案的数量。通过对输入输出样例的分析,采用动态规划方法进行求解,状态转移方程为dp[i][j] = (dp[i][j] + dp[i-1][j-k]) % 1000007,其中i、j和k分别代表花的种类、总盆数和每种花的最大盆数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共mm盆。通过调查顾客的喜好,小明列出了顾客最喜欢的nn种花,从11到nn标号。为了在门口展出更多种花,规定第ii种花不能超过a_i盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。
试编程计算,一共有多少种不同的摆花方案。

输入格式

第一行包含两个正整数nn和mm,中间用一个空格隔开。

第二行有nn个整数,每两个整数之间用一个空格隔开,依次表示a_1,a_2,…,a_n

输出格式

一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对10000071000007取模的结果。

输入输出样例

输入 #1
2 4
3 2
输出 #1
2
说明/提示
【数据范围】

对于20%数据,有0<n≤8,0<m≤8,0≤a_i≤8
对于50%数据,有0<n≤20,0<m≤20,0≤a_i≤20
对于100%数据,有0<n≤100,0<m≤100,0≤a_i≤100
NOIP 2012 普及组 第三题


解析部分

分析

这个题是一道典型的动态规划,即可以从之前的状态推出后面的状态的最优解。这道题有n种方法,可以搜索,背包,DP,但这里就不说那么多种了&

### 东方博宜 OJ 1765 题解或解题思路 由于当前引用中并未直接提及东方博宜 OJ 平台编号为 1765 的题目内容及解法,以下将基于已有的引用信息和常规竞赛编程问题的解决方法,提供一种可能的分析与解答框架。 #### 可能的题目类型 根据东方博宜 OJ 平台的特点以及引用中的其他题目[^1],可以推测 1765 题目可能涉及以下领域之一: - 数据结构操作(如数组、链表、栈等) - 算法设计(如排序、搜索、动态规划等) - 字符串处理 - 数学计算 假设该题目属于常见算法题型之一,以下将从数据结构操作的角度进行分析。 #### 数据结构操作示例 若题目要求对一个序列进行多次操作(如插入、删除、排序等),可以参考引用 [4] 中的代码逻辑。以下是类似的实现方式: ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, m; // n: 初始序列长度, m: 操作次数 cin >> n >> m; vector<int> v; // 存储初始序列 for (int i = 0; i < n; i++) { int opt; cin >> opt; v.push_back(opt); } for (int i = 1; i <= m; i++) { int opt, x; cin >> opt >> x; vector<int>::iterator it = v.begin(); if (opt == 1) { // 插入 int y; cin >> y; v.insert(it + x, y); } else if (opt == 2) { // 删除 v.erase(it + x - 1); } else if (opt == 3) { // 排序 int y; cin >> y; sort(it + x - 1, it + y); } else if (opt == 4) { // 反转 int y; cin >> y; reverse(it + x - 1, it + y); } else { // 自定义操作 int y, z; cin >> y >> z; for (int j = --x; j < y; j++) { if (v[j] == z) { v.erase(it + j); j--; y--; } } } } for (int i = 0; i < v.size(); i++) { cout << v[i] << " "; } return 0; } ``` 此代码适用于多操作场景下的序列管理问题,具体功能已在注释中标明[^4]。 #### 字符串处理示例 如果题目涉及字符串操作,例如生成特定格式的输出,可以参考引用 [5] 的代码逻辑。以下是类似的应用: ```cpp #include <bits/stdc++.h> using namespace std; int main() { char c; int n; cin >> c >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n - i; j++) { cout << ' '; } for (int j = 1; j <= 2 * i - 1; j++) { cout << char(c + j - 1); } cout << endl; } return 0; } ``` 此代码用于生成字符三角形,可根据实际题目需求调整逻辑[^5]。 #### 解题思路总结 在没有明确题目描述的情况下,建议从以下几个方面入手: 1. 分析输入输出格式,明确问题核心。 2. 根据问题特点选择合适的数据结构或算法。 3. 编写代码时注意边界条件和特殊情况的处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值