PyTorch 深度学习
入门级PyTorch深度学习笔记
玄月无疆
这个作者很懒,什么都没留下…
展开
-
【PyTorch深度学习】 第十一讲:RNN基础
1.概念原理 处理带有序列信息的数据 RNNCell:线性层,循环执行 2. 3.原创 2021-07-20 11:16:24 · 207 阅读 · 0 评论 -
【PyTorch深度学习】 第十讲:CNN高阶
1.概念原理 1x1卷积核:改变通道数量;减少运算的数量 2.代码实现 3.结果展示原创 2021-07-17 16:26:40 · 145 阅读 · 0 评论 -
【PyTorch深度学习】 第九讲:CNN基础
1.概念原理 利用卷积盒,对数据矩阵进行相乘相加 每个通道对应一个盒 2.代码实现 import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim # prepare dataset batch_size原创 2021-07-11 15:15:04 · 115 阅读 · 0 评论 -
【PyTorch深度学习】 第八讲:多分类
1.概念 softMax:概率分布,将每个项的值/累加的值=每个结果出现的概率值 NLLLoss:就是把输出与Label对应的那个值拿出来,再去掉负号,再求均值 CrossEntropyLoss:就是把Softmax–Log–NLLLoss合并成一步 2.代码实现 import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader原创 2021-07-10 22:18:28 · 195 阅读 · 0 评论 -
【PyTorch深度学习】 第七讲:加载数据集
1.原理 单个样本 :得到比较好的随机性,较好的跨越鞍点;训练时间长 batch:最大化提升向量计算优势,提高计算效率;性能较差 mini-batch:均衡结果性能和计算速度 2.新概念 DateSet:抽象类,无法实例化;可继承 DataLoader:加载数据 3.代码实现 import torch import numpy as np from torch.utils.data import Dataset from torch.utils.data import DataLoader原创 2021-07-10 11:09:40 · 544 阅读 · 0 评论 -
【PyTorch深度学习】 第六讲:处理多维特征的输入
1.原理 对数据矩阵使用广播机制 降维操作 2.代码实现 import numpy as np import torch import matplotlib.pyplot as plt # prepare dataset xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32) x_data = torch.from_numpy(xy[:, :-1]) y_data = torch.from_numpy(xy[:, [-1]])原创 2021-07-06 23:00:51 · 92 阅读 · 0 评论 -
【PyTorch深度学习】 第五讲:逻辑斯蒂回归
1.原理 添加激活函数,避免线性回归的无效 2.代码实现 import torch # import torch.nn.functional as F # prepare dataset x_data = torch.Tensor([[1.0], [2.0], [3.0], [4.0]]) y_data = torch.Tensor([[0], [0], [1], [1]]) # design model using class class LogisticRegressionModel(tor原创 2021-07-06 22:55:53 · 221 阅读 · 2 评论 -
【PyTorch深度学习】 第四讲:用PyTorch实现线性回归
1.原理 使用PyTorch的内部函数实现线性回归,训练模型 2.代码展示 # author:ZhuYuYing # data:2021/7/6 # projectName:tor-start import torch x_data = torch.tensor([[1.0], [2.0], [3.0]]) y_data = torch.tensor([[2.0], [4.0], [6.0]]) ''' __init__() 初始化函数 torch.nn.Linear 第一个参数原创 2021-07-06 22:16:00 · 143 阅读 · 0 评论 -
【PyTorch深度学习】 第三讲:反向传播
1.数学含义 y = w * x 2.含义解释 使用pytorch的内置backward函数进行自动求导 3.代码演示 import torch x_data = [1.0,2.0,3.0] y_data = [2.0,4.0,6.0] w = torch.tensor([1.0]) # 版本选择 w.requires_grad = True #是否计算梯度 def forward(x): return x * w def loss(x,y):原创 2021-07-06 13:51:05 · 88 阅读 · 0 评论 -
【PyTorch深度学习】 第二讲:梯度下降
1.数学含义 y = w * x cost = 1/n ∑(y_pred - y)^2 grad = 2 * x * (x * w - y) 2.含义解释 线性回归反向传播 对cost函数求w导得出w的变化率,更新w求得最佳 3.代码实现 import math # 数据 x_data = [1.0,2.0,3.0] y_data = [2.0,4.0,6.0] w = 1.999 #线性传播,计算y = w * x def forword(x): return x * w #原创 2021-07-04 21:54:41 · 103 阅读 · 0 评论 -
【PyTorch深度学习】 第一讲:线性回归
1、数学含义 y = w * x loss = (y_pred - y)^2 2.含义解释 通过简单的线性函数来对未知数x及y建立映射 在每次取不同的w时计算预测y_pred和真实值y的差值,以观看那个w最佳 3.代码实现 import numpy as np from matplotlib import pyplot as plt import math # 数据 x_data = [1.0,2.0,3.0] y_data = [2.0,4.0,6.0] #线性传播,计算y = w * x d原创 2021-07-04 21:08:12 · 101 阅读 · 0 评论