echo99
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
27、中医草药组合协同作用分析与临床研究
本博客探讨了中医草药组合的协同作用及其临床研究,基于北京某中医医院女性不孕症治疗数据集,采用IRM算法分析双向与三向草药相互作用,挖掘具有统计显著性和临床价值的组合。研究揭示了滋阴、理气、安胎等潜在有效配伍,并指出当前分析中存在难以解释的组合,提出通过症状聚类和多学科合作优化研究方法。展望未来,结合信息技术、统计学与中医药知识的深度融合,推动中医现代化与循证医学发展。原创 2025-11-17 02:03:37 · 32 阅读 · 0 评论 -
26、中医药研究相关方法与策略解析
本文系统解析了中医药研究中的关键方法与策略,涵盖对照组设置的挑战与创新、生活质量与患者报告结局的评估、生物标志物的应用、临床研究质量控制问题及改进措施、安全性评估的重要性、案例报告的标准化需求,以及基于交互规则挖掘(IRM)的中药方剂分析方法。文章还探讨了中医药研究面临的方法学、文化差异和数据处理挑战,并提出多学科合作、标准化建设和技术创新等应对策略,展望了中医药现代化与国际化的未来发展路径。原创 2025-11-16 16:15:54 · 37 阅读 · 0 评论 -
25、中医循证医学与医学信息学概述
本文综述了中医循证医学与医学信息学的发展现状与挑战,涵盖中医在慢性病治疗中的有效性与安全性评估,分析了当前临床研究中存在的主要问题,如证型分类标准化不足、随机化方法不规范等。文章提出通过提升临床研究质量、加强证型分类标准化、促进国际交流与合作,以及发展中医医学信息学来推动中医的科学化和国际化。结合案例分析与技术应用,展示了数据整合、分析及辅助决策系统在中医现代化中的重要作用,展望了中医在未来医疗体系中的广阔前景。原创 2025-11-15 09:30:13 · 34 阅读 · 0 评论 -
24、中医药数据挖掘与质量评估:挑战与解决方案
本文探讨了中医药临床研究中存在的信息质量问题,包括成分信息缺失、生产工艺不透明和研究方法缺陷等,并以‘参麦注射液’为例揭示了同名产品间化学成分差异对疗效评估的影响。为应对这些问题,文章介绍了SAPHRON™中医药信息平台,该平台通过整合五大数据库并结合文本挖掘、知识发现、聚类分析与STIQES质量评估系统,支持中医药数据的系统化挖掘与高质量证据生成。同时提出加强行业标准、提升期刊出版质量、发展数据挖掘技术和优化统计方法等解决方案,旨在提升中医药研究的科学性与可信度,推动中医药现代化与国际化发展。原创 2025-11-14 13:40:00 · 46 阅读 · 0 评论 -
23、传统中医药临床数据挖掘与质量评估:SAPHRON系统的应用与探索
本文介绍了SAPHRON™数据库和SIRC中医药信息质量评估系统(STIQES)在传统中医药临床数据挖掘与质量评估中的应用。通过对412篇治疗高脂血症的中医药临床试验进行质量分析,揭示了当前研究在科学设计上的诸多不足。SAPHRON数据库通过整合疾病、处方、草药及活性化合物等多维数据,结合STIQES系统的质量评估与推荐功能,为中医药信息的可信度评价和早期药物开发提供了有力支持。文章还展示了数据挖掘在中医药领域的研究进展,并展望了未来结合人工智能技术推动中医药现代化的发展方向。原创 2025-11-13 16:50:26 · 43 阅读 · 0 评论 -
22、中医临床数据挖掘:方法、应用与未来方向
本文综述了中医临床数据挖掘的主要方法及其应用,包括频繁项集与关联规则、复杂网络分析(CNA)、主题模型(如LDA)以及马尔可夫决策过程(MDP)在中医处方知识发现、患者群体分型和个性化治疗规划中的应用。文章通过DAMS和GPBT综合征的案例展示了数据挖掘在提取核心草药组合和优化治疗路径方面的潜力。同时,探讨了未来研究方向:基于临床表型与基因型关联的转化生物医学信息学、以治疗结果为导向的有效性驱动数据挖掘,以及面向高质量数据源构建的数据预处理与质量监控方法,旨在推动中医临床知识的系统化发现与实际应用。原创 2025-11-12 09:39:36 · 59 阅读 · 0 评论 -
21、中医临床数据仓库中的数据挖掘探索
本文探讨了中医临床数据仓库中的数据挖掘探索,涵盖了数据仓库的基础架构、现实世界中的数据挖掘问题、相关研究进展及未来发展趋势。文章介绍了核心数据表与多维数据模型的设计、基于Java开发的ETL工具医疗集成器(MI)、OLAP分析与复杂网络分析系统Liquorice的应用。针对中医数据的自然语言表达、术语灵活性、数据质量差和高维度特征等挑战,讨论了数据预处理、结果后处理与解释的关键问题,并通过气虚证分类实验验证了SVM、ADTree和贝叶斯网络在中医诊断建模中的有效性。最后,提出了优化ETL、结合领域专家、多学原创 2025-11-11 11:50:28 · 75 阅读 · 0 评论 -
20、中医药研究:从草药组合到数据挖掘的综合探索
本文探讨了中医药研究中草药组合的药理学特性及其在复杂系统中的分析挑战,介绍了中医药临床数据仓库的构建与关键技术组件,并详细阐述了数据挖掘在疾病诊断、治疗优化和药物研发中的应用。通过实际案例分析展示了数据挖掘在糖尿病治疗研究中的价值,展望了多组学数据融合、人工智能深度应用及跨领域合作推动中医药现代化与全球发展的未来趋势。原创 2025-11-10 16:59:24 · 25 阅读 · 0 评论 -
19、研究复杂协同作用的创新综合方法
本文介绍了一种研究复杂药物组合协同作用的创新综合方法,结合周式组合指数(CI)与扩展的塔拉里达回归模型,用于评估草药组合如DG(丹参-葛根)和ELP(淫羊藿-女贞子-补骨脂)在不同生物效应下的相互作用类型及统计显著性。通过计算CI值判断协同、相加或拮抗作用,并利用回归分析比较实验组合曲线与预期相加曲线的差异,进而通过t检验评估协同作用的显著性。进一步采用边际贡献分析揭示各子集组合的相互作用机制,发现如LP二元组合具有最强协同性,而三元组合ELP可能呈现整体拮抗。研究表明该综合方法能有效解析高维草药组合中的复原创 2025-11-09 16:17:15 · 40 阅读 · 0 评论 -
18、探索中药生物活性成分及复方协同作用的新方法
本文介绍了一种探索中药生物活性成分及复方协同作用的新方法。通过QPAR-F方法,结合化学指纹图谱与生物活性数据,高效识别中药中的活性组分,并建立预测模型,无需先验化学或生物学信息。该方法可将化学指纹转化为生物活性指纹,用于中药质量评估、配方优化和个性化制备。同时,提出一种创新的两步法研究复方协同作用:利用Chou的组合指数评估单草药作用,结合剂量比设计与显著性检验分析草药间相互作用。案例研究表明该方法在丹参-葛根和淫羊藿-女贞子-补骨脂等复方中有效揭示协同机制并指导优化。未来可结合人工智能与大数据拓展至保健原创 2025-11-08 12:17:08 · 30 阅读 · 0 评论 -
17、揭示生物活性成分的新方法:QPAR - F 方法解析
本文介绍了一种用于揭示混合物中生物活性成分的新方法——QPAR-F方法。该方法通过将样品色谱图划分为多个区域,并利用不同区域组合进行偏最小二乘(PLS)建模,以预测样品的总抗氧化能力(TAC)。通过比较不同组合模型的预测误差(RMSEP),能够有效识别出对生物活性贡献显著的色谱区域,并考察区域间的协同作用。研究在合成混合物系统(MIX)和草药葛根(YG)中验证了该方法的有效性,并通过实验制备组分进一步确认结果的可靠性。QPAR-F方法为复杂体系中活性成分的快速识别提供了有力工具,具有良好的应用前景。原创 2025-11-07 12:41:49 · 28 阅读 · 0 评论 -
16、中药活性成分研究:色谱指纹与化学计量学技术
本文综述了色谱指纹与化学计量学技术在中药质量控制和活性成分研究中的应用。针对中药成分复杂、质量控制难的问题,介绍了气相色谱、液相色谱及联用技术的特点,并阐述了化学计量学在指纹图谱预处理与模式识别中的关键作用。重点探讨了QPAR-F方法的原理、流程及其在预测生物活性区域中的优势,展示了其在葛根等中药研究中的成功应用。文章还展望了该方法在未来中药现代化研究中的广阔前景,包括算法优化、多技术融合及在复方研究中的潜在应用。原创 2025-11-06 12:37:42 · 49 阅读 · 0 评论 -
15、草药质量控制的色谱指纹与化学计量技术
本文系统介绍了色谱技术与化学计量学方法在草药质量控制中的综合应用。涵盖了UHPLC、GC-MS、HPLC-DAD等多种色谱技术的原理与优势,并详细阐述了香农信息含量、惩罚最小二乘平滑、air-PLS基线校正、多尺度峰对齐、Haar小波峰检测、多元分辨率、相似性分析及多种模式识别方法的数学原理与实际应用。通过枳实样品分析案例,展示了从数据采集、预处理到特征提取与模型构建的完整流程,对比了各类方法的优缺点,并提出了实验优化、参数调整等实际应用中的注意事项。最后展望了该领域在技术创新、多学科融合、标准化和智能化方原创 2025-11-05 14:03:46 · 30 阅读 · 0 评论 -
14、基于人工神经网络的中药诊断与色谱指纹质量控制技术
本文探讨了人工神经网络在中药诊断与中药材成分发现中的应用,展示了其在移动诊所、远程医疗和个性化医疗中的潜力;同时介绍了色谱指纹与化学计量技术在中药质量控制中的关键作用,包括数据预处理、相似性计算和模式识别等流程。通过mermaid流程图直观呈现了诊断决策与质量控制的整体框架,并分析了当前挑战与优化方向。最后展望了技术融合、实时监测和标准制定等未来发展方向,旨在推动中医药现代化与国际化进程。原创 2025-11-04 11:40:01 · 24 阅读 · 0 评论 -
13、中医综合征假设的统计验证与人工神经网络在中医诊断中的应用
本文探讨了通过潜树分析对中医综合征假设进行统计验证,并研究了人工神经网络(ANN)在中医诊断和草药成分发现中的应用。基于604名抑郁症患者的症状数据,潜变量分析验证了阳虚、肾虚、气郁化火等中医假设的有效性。同时,提出基于反向传播的ANN方法,利用相关性指数(RI)量化草药与疾病之间的关联,支持‘同病异治,异病同治’原则。文章详细阐述了ANN在中医领域的操作流程、应用案例及效果分析,展示了其在加速草药发现、提升诊断科学性方面的潜力。最后总结了当前成果与局限,展望未来在数据质量、模型解释性和应用拓展方面的研究方原创 2025-11-03 11:12:41 · 46 阅读 · 0 评论 -
12、中医证候假设在抑郁症患者中的统计验证
本研究采用潜在树分析方法,对包含604名抑郁症患者的数据集进行统计建模,旨在验证中医证候假设在抑郁症中的有效性。通过提取未标记的症状数据并构建潜在变量模型,发现多个潜在变量与中医理论中的证候(如阳虚、阴虚)高度匹配,证实了中医所描述的症状共现模式在数据中真实存在。结果为中医辨证提供客观证据,并支持将抑郁症患者按中医证候分类进行个体化治疗的可能性。原创 2025-11-02 16:45:19 · 24 阅读 · 0 评论 -
11、六味地黄丸配方的网络分析及其在中医研究与临床实践中的应用
本文基于SinoMed数据库,通过文本挖掘与网络分析方法,系统研究了六味地黄丸在中医理论与临床实践中的应用。文章从疾病、证型、症状、中药及治疗原则等多个维度构建合并网络,揭示了六味地黄丸‘一方治多病’的特点及其在肾阴虚、肝肾阴虚等证型中的核心作用。研究发现,该方剂可调节约58种疾病,如糖尿病、高血压、贫血等,且在临床中常根据患者具体情况进行个性化加减,体现中医辨证论治的灵活性。同时,文献数据与教科书内容存在差异,反映出当前临床实践的侧重点。合并网络的构建为理解方剂-证型-疾病-中药之间的复杂关系提供了可视化原创 2025-11-01 11:10:32 · 68 阅读 · 0 评论 -
10、基于网络的草药作用机制解析与抗阿尔茨海默病草药案例研究
本文探讨了基于网络的草药作用机制解析方法及其在抗阿尔茨海默病(AD)治疗中的应用。复杂疾病需多靶点干预策略,中药的‘多成分、多靶点’特性契合这一需求。结合基因组学、转录组学、蛋白质组学等‘-omics’技术和计算模型,可系统揭示中药的整体调节和协同作用机制。通过案例研究,银杏、千层塔、丹参和香蜂草等草药被证实通过影响AD相关通路及与其他疾病交叉的通路发挥治疗作用。多种基于算法和网络的计算工具助力多靶点药物发现与组合优化。未来,整合高通量数据与计算机模拟将加速有效草药配方的开发,推动复杂疾病治疗的突破。原创 2025-10-31 14:14:02 · 24 阅读 · 0 评论 -
9、中医机器学习医疗诊断与网络数据分析
本文探讨了中医在机器学习医疗诊断与网络数据分析中的应用,重点介绍了基于LEVIS高血压中医数据库的数据处理流程,包括数据提取、空值处理与标签平衡方法。同时,梳理了用于中药机制研究的多种数据库,如草药、蛋白质相互作用和信号通路数据库,并展示了如何通过网络方法整合多源数据以揭示中药‘多成分、多靶点’的作用机制。文章进一步提出将数据处理与机制研究相结合的应用流程,支持构建分类模型并制定个性化中药治疗方案,最后展望了人工智能与组学技术在推动中医现代化中的潜力。原创 2025-10-30 10:45:27 · 47 阅读 · 0 评论 -
8、机器学习技术在中医诊断中的应用研究
本文研究了机器学习技术在中医诊断中的应用,重点对比了多种多类分类方法(如MAPLSC、SVM、J48、KNN等)在中医临床数据集上的性能表现。通过宏平均与微平均准确率、F1度量等评估标准,分析了各类算法在处理不平衡数据时的优劣。实验结果表明,MAPLSC在宏平均指标上优于其他方法,具备平衡类别性能的能力。此外,采用ML-KNN结合特征级信息融合的方法,在高血压数据集中显著提升了诊断准确性,验证了‘四诊合参’的理论价值。文章还总结了实验流程、数据集特点,并探讨了机器学习在中医领域应用的优势与挑战,提出了未来优原创 2025-10-29 16:24:43 · 38 阅读 · 0 评论 -
7、机器学习技术在医疗诊断中的应用与算法解析
本文探讨了多种机器学习算法在冠心病(CHD)中医综合征诊断中的应用。重点介绍了HOML、MAPLSC和Fusion-MLKNN三种算法的原理与实现方式,其中HOML结合模拟退火、遗传算法与爬山算法进行多阶段特征优化;MAPLSC扩展了不对称PLS分类器以处理多类不平衡问题;Fusion-MLKNN通过特征融合与多标签学习建模症状与综合征关系。实验基于CHD数据集,采用RAD方法进行症状选择,并比较了不同特征选择策略与分类器的性能。结果表明,HOML显著降低了Hamming损失、One-error等指标,优于原创 2025-10-28 14:28:37 · 31 阅读 · 0 评论 -
6、利用机器学习技术进行中医诊断
本文探讨了利用机器学习技术进行中医诊断的新方法,重点介绍了相对关联密度(RAD)和HOML特征选择算法,以及MAPLSC和Fusion-MLKNN分析模型。针对中医数据高维、多标签、多类别及特征冗余等挑战,提出结合医学意义的特征选择与分类建模方法,并在冠心病、唇诊和高血压数据集上验证其有效性。研究强调症状与证候间的关联可解释性,融合‘四诊合参’理念,提升中医诊断的科学化与智能化水平。原创 2025-10-27 16:37:18 · 27 阅读 · 0 评论 -
5、中医处方因果复杂性分析与应用
本文探讨了中医处方中草药组合的因果复杂性,提出并改进了基于集合理论的启发式算法(如WLWO和LCMC),用于挖掘导致治疗效果的关键草药配置。研究结合临床数据仓库中的460例失眠门诊记录,通过正负结果的因果配置分析、频率与相关性网络构建以及交互效应评估,识别出核心草药组合及其相互作用模式。进一步通过叠加素蕴含项实现结果可视化,揭示了次加性与超加性效应。尽管方法有效,但仍存在未考虑草药剂量与临床症状、计算成本高等问题,未来将向模糊集QCA扩展以提升分析精度。原创 2025-10-26 16:20:58 · 25 阅读 · 0 评论 -
4、中医处方因果复杂性:理解草药配方的潜在机制
本文探讨了中医处方中草药组合的因果复杂性,提出了一种结合网络分析与BOOM算法的两步框架,以揭示草药配方的潜在机制。传统相关方法难以处理联合因果、等效性和因果不对称等问题,因此研究引入定性比较分析(QCA)及其改进算法BOOM,克服了经典Quine-McCluskey算法在大规模数据上的效率瓶颈。通过构建频率网络和相关性网络,识别核心草药及其协同关系,并利用改进的BOOM算法挖掘有效草药组合。案例分析基于失眠治疗处方数据,结果表明该方法能有效发现具有高交互性的草药配置,为中医方剂的科学化分析提供了新路径。未原创 2025-10-25 13:31:33 · 26 阅读 · 0 评论 -
3、中医比较有效性研究的应用与发展
本文探讨了比较有效性研究(CER)在中医领域的应用与发展。介绍了CER的核心理念及其在美国政策推动下的发展,分析了CER从群体医学向个性化医学的转变如何与中医辨证论治相契合。文章重点阐述了PICOTS类型学在中医研究设计中的潜力,并展示了其应用流程。同时,讨论了大数据、机器学习和数据挖掘等数据驱动技术在揭示中医处方模式和证候建模中的应用前景。尽管面临电子健康记录不统一、数据系统不兼容等挑战,未来通过建立统一标准、加强信息化建设,有望提升中医研究的科学性和可信度,推动中医药在全球医疗体系中的更广泛应用。原创 2025-10-24 16:35:31 · 39 阅读 · 0 评论 -
2、中医研究中随机对照试验(RCT)的优化探索
本文探讨了随机对照试验(RCT)在中医研究中的优化路径,针对传统RCT在评估中医干预时存在的个性化医疗冲突、安慰剂设计难题和患者-提供者关系忽略等问题,从‘设计’‘实施’和‘评估’三个维度提出改进策略。包括采用两阶段分层方案和n-of-1试验优化研究设计,通过创建治疗手册和开展实用性试验改进实施方式,并结合定性评估与‘中医CONSORT’报告指南提升结果解释与发表质量。这些调整有助于构建更科学、严谨的中医证据体系,推动中医药现代化发展。原创 2025-10-23 16:27:46 · 101 阅读 · 0 评论 -
1、探寻中医研究的证据:回顾与新机遇
本文探讨了中医在全球医疗环境中获得认可所面临的科学证据挑战,回顾了中医与西医在诊断和治疗理念上的根本差异,分析了传统随机对照试验(RCT)在评估中医干预中的局限性,并提出了改进RCT设计及采用比较有效性研究(CER)等新方法的必要性。文章重点介绍了多种创新技术在中医研究中的应用,包括机器学习、网络药理学、数据挖掘、色谱指纹图谱分析、人工神经网络和潜树分析等,展示了这些方法在揭示中医机制、验证综合征假设、优化中药配方和提升临床数据质量方面的潜力。最后,文章展望了中医研究未来的发展方向,强调多学科协作、新型研究原创 2025-10-22 14:19:17 · 34 阅读 · 0 评论
分享