自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(141)
  • 资源 (1)
  • 收藏
  • 关注

原创 《从“专业逻辑”到“智能建模”——城市用地智能化精细识别的方法探索》总结

本文提出了一种可解释、可迁移、高精度的城市用地智能识别方法。实现了从“专业逻辑”到“智能建模”的转化,推动了规划基础工作的智能化转型。为未来“人机协同”的规划模式提供了重要参考。

2025-11-30 12:32:55 319 1

原创 《大规模 3D 城市布局的语义与结构引导可控生成》翻译

城市建模对于城市规划、场景合成和游戏至关重要。现有的基于图像的方法生成多样化的布局,但通常缺乏几何连续性和可扩展性,而基于图的方法捕捉结构关系却忽略了地块语义。我们提出了一个可控框架,用于生成大规模 3D 矢量城市布局,该框架同时以几何和语义为条件。通过融合几何和语义属性、引入边权重以及在图中嵌入建筑高度,我们的方法将 2D 布局扩展到逼真的 3D 结构。它还允许用户通过修改语义属性直接控制输出。实验表明,该方法能生成有效的大规模城市模型,为数据驱动的规划和设计提供了有效工具。关键词: 城市布局生成;

2025-11-30 12:25:25 952

原创 UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction

数据收集与预处理数据源:行政分区(城市、区、区域)道路网络(路段、路口)POI(兴趣点)城市:纽约(NYC)和芝加哥(CHI)预处理:过滤无效数据、对齐空间范围、合并长尾类别。UUKG 是一个开创性的、开源的、统一的城市知识图谱数据集,通过结构感知的嵌入方法显著提升了多种城市时空预测任务的性能。该工作为城市计算和图表示学习的研究提供了重要的数据和基准支持。

2025-11-24 02:14:30 791

原创 UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction

UrbanKGent通过结合指令工程、工具增强与模型微调,有效解决了LLM在城市知识图谱构建中的两大挑战,实现了高效、自动、可扩展的UrbanKG构建,为智慧城市研究提供了强有力的工具支持。如果需要我进一步提炼为PPT、图示或中文简报,也可以继续告诉我。

2025-11-10 00:21:16 305

原创 智能城市规划的理论与技术机制探索

这篇文章系统性地构建了智能城市规划的“三阶段九模块”技术流程,并为每个模块提供了具体的技术方法和典型应用案例,具有很强的实操指导意义。此阶段旨在通过智能化的感知、识别与仿真,全面、深度地认知城市系统,为规划提供依据。此阶段基于分析结果,进行预测、生成和优化,形成科学、创新的规划方案。此阶段将规划意图落实到实施与管理中,并实现动态反馈与公众参与。系统梳理智能城市规划的理论演进、技术机制与流程框架。

2025-11-03 05:27:15 479

原创 LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities

LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities》系统地评估了大语言模型在知识图谱构建与推理方面的能力,并提出了未来发展的方向。

2025-10-27 01:21:50 421

原创 Unifying Large Language Models and Knowledge Graphs: A Roadmap

本论文提出了一个清晰的。

2025-10-27 01:20:05 440

原创 SuperSimpleNet论文阅读笔记

问题背景:表面缺陷检测在工业制造中至关重要,但现有方法往往局限于特定监督模式,难以适应实际生产中标注数据的多样性。解决方案:提出,基于 SimpleNet 构建,具备以下三大创新:改进的合成异常生成方法高效的分类头设计统一的架构,支持四种监督模式成果:在多个基准数据集上取得 SOTA 性能,推理速度快(<10ms),是首个能充分利用所有可用标注数据的模型。

2025-10-27 01:17:56 885

原创 奇异值分解 (Singular Value Decomposition, SVD)

简单来说,奇异值分解是将一个任意实数或复数矩阵分解为三个特定矩阵乘积的方法。对于一个m×nm \times nm×n的矩阵AAAAUΣVT对于实数矩阵A = U \Sigma V^T \quad (\text{对于实数矩阵})AUΣVT对于实数矩阵AUΣVH对于复数矩阵,VH是V的共轭转置A = U \Sigma V^H \quad (\text{对于复数矩阵,} V^H \text{ 是 } V \text{ 的共轭转置})AUΣ。

2025-09-13 19:21:24 1349

原创 MyBatis中的@Options注解

属性作用常用场景/默认值是否使用自增主键插入后获取主键(默认false主键值赋给对象的哪个属性必须与配对使用flushCache执行后是否清空缓存增删改默认为true,查询默认为falseuseCache是否缓存查询结果查询语句默认为truetimeout语句执行超时时间(秒)防止长时间运行fetchSizeJDBC驱动抓取结果的行数提示优化大批量数据查询性能结果集类型一般用默认使用的Statement类型一般用默认PREPARED(防注入)@Options。

2025-09-04 15:37:24 842

原创 协方差矩阵

协方差矩阵就是一个将所有变量的方差和两两之间的协方差整合在一个矩阵中的数学工具。假设我们有三组数据:变量XXX(例如身高)、变量YYY(例如体重)、变量ZZZ(例如年龄)。它们的协方差矩阵Σ\SigmaΣΣCovXXCovXYCovXZCovYXCovYYCovYZCovZXCovZYCovZZΣ​CovXXCovYXCovZX​CovXYCovYYCovZY​CovXZCovY。

2025-09-02 16:11:41 1826

原创 马哈拉诺比斯距离

设有一个多元数据点x⃗x1x2xNTxx1​x2​...xN​T,和一个数据集。这个数据集的均值向量为μ⃗μ1μ2μNTμ​μ1​μ2​...μN​T,协方差矩阵为Σ\SigmaΣ。点x⃗\vec{x}x到均值向量μ⃗\vec{\mu}μ​的马哈拉诺比斯距离DMD_MDM​DMx⃗x⃗−μ⃗TΣ−1x⃗−μ⃗DM​xx−μ​TΣ−1。

2025-09-02 15:55:49 1001

原创 流形:简述和定义

流形是局部类似欧氏空间但全局结构可能复杂的数学对象。其核心思想在于:任何复杂形状在足够小的区域内都呈现平坦性,如地球表面局部看似平面。数学上,n维拓扑流形由多个同胚于Rⁿ开子集的坐标卡拼接而成,微分流形则进一步要求坐标变换光滑。流形理论为描述曲线曲面、相空间等提供了统一框架,支持将微积分推广到弯曲空间,在物理学(如广义相对论)、工程学、机器学习等领域有重要应用。关键部件包括坐标卡、图册和转移函数,它们共同实现了"局部简单、全局复杂"的研究范式。

2025-09-01 18:38:41 1045

原创 NumPy:避免使用for循环

特性Python for循环NumPy向量化操作执行层面Python解释器预编译的C代码性能非常慢极快(数十到数百倍提升)代码风格冗长简洁、优雅、易读可读性低(需要跟踪循环变量)高(声明式,表达“做什么”而非“怎么做”)推荐度避免使用强烈推荐将问题转化为数组或矩阵运算,并利用NumPy的向量化函数和广播机制来替代显式的for循环。这不仅能极大提升代码运行速度,也会使你的代码更加简洁和“Pythonic”。

2025-08-27 16:55:53 845

原创 对卷积层的简单理解

你可以把CNN的工作过程想象成用一组滤镜(卷积核)去观察一幅画第一组粗糙滤镜:只能看出画的大致轮廓和色块(边缘、颜色)。第二组精细滤镜:在轮廓的基础上,能看出眼睛、鼻子等部件(模式组合)。第三组更抽象的滤镜:通过这些部件,最终判断出“这是一张人脸”(高级语义信息)。而池化层的作用,则像是在每次用滤镜观察后,缩小一下画的尺寸,只保留最关键的信息,从而减少后续处理的工作量。因此,卷积层是CNN之所以能高效处理图像类数据的基石。

2025-08-27 16:39:36 945

原创 对池化层的简单理解

核心目的具体作用类比降维减参减少特征图尺寸,降低计算量和内存消耗,防止过拟合。就像看一张高清地图,池化帮你换成了一张分辨率更低但关键信息(城市、河流)仍在的概要地图。平移不变性使网络不关心特征的确切位置,只关心特征是否存在,提升模型鲁棒性。无论猫的脸在图片左边还是右边,只要检测到“猫眼”、“猫胡子”等特征,就认为它是猫。增大感受野让后续层能看到输入图像中更广阔的区域,从而学习更复杂的模式。从看清一个个像素点,到看清边缘,再到看清纹理,最后看清整个物体。池化加速了这个“看清全局”的过程。

2025-08-27 16:37:47 803

原创 马尔可夫性和图模型中的马尔可夫性的比较探究

性质描述范围与经典马尔可夫性的关系强度经典马尔可夫性时序序列基础、源头特例成对马尔可夫性图中任意两个非相邻节点在图结构上的第一种推广最弱局部马尔可夫性图中单个节点与其非邻居更接近“给定现在,与其它无关”的思想中等全局马尔可夫性图中任意两个被分离的集合是经典马尔可夫性在图上的终极和一般形式最强。

2025-08-22 16:46:38 824

原创 Thymeleaf 视图解析器

在深入 Thymeleaf 之前,必须首先理解视图解析器(View Resolver)在 Spring MVC 架构中的角色。(前端控制器)接收请求。查询,找到处理该请求的控制器(Controller)。控制器执行逻辑,返回一个逻辑视图名(Logical View Name)(例如"home"拿到这个逻辑视图名后,会询问所有配置的:“你们谁能根据这个逻辑视图名解析出一个真正的View对象?某个响应说“我能!”,并返回一个View对象(例如JstlView调用这个View对象的。

2025-08-20 11:21:53 995

原创 im2col详解

(image to column)是一种在卷积神经网络(CNN)中高效实现卷积操作的算法。它通过将输入图像中的局部区域展开成列向量,将卷积运算转化为矩阵乘法,从而利用高度优化的线性代数库(如BLAS)加速计算。是卷积神经网络中的关键技术,通过将局部感受野数据重组为列向量,将卷积转化为矩阵乘法,大幅提升计算效率。尽管有内存开销高的缺点,但在现代深度学习框架(如PyTorch的。)中仍是基础优化手段。理解其原理有助于深入CNN实现细节及性能优化。:对批次中每个样本重复上述步骤,结果按列拼接(总列数。

2025-08-19 17:47:51 558

原创 Affine层 (全连接层) 的反向传播公式

梯度类型公式输入维度输出维度输入梯度∂L∂X∂L∂YW⊤∂X∂L​∂Y∂L​W⊤∂L∂YBM∂Y∂L​BMBN(B, N)BN权重梯度∂L∂WX⊤∂L∂Y∂W∂L​X⊤∂Y∂L​XBNXBNNM(N, M)NM偏置梯度∂L∂b1B⊤∂L∂Y∂b∂L​1B⊤​∂Y∂L​∂L∂YBM∂Y∂L​B。

2025-08-15 11:11:59 1037

原创 He初始化(Kaiming初始化):原理与推导

层类型ninnin​noutnout​全连接层输入神经元数量输出神经元数量卷积层kernel_w×kernel_h×kernel_w×kernel_h×kernel_w×kernel_h×kernel_w×kernel_h×核心创新:通过方差放大(2nn2​)补偿ReLU的方差减半效应数学本质:保持前向激活值/反向梯度方差跨层稳定实践建议ReLU网络默认使用He初始化全连接/卷积层统一用配合BatchNorm效果更佳代码实现参考。

2025-08-14 15:01:51 1125

原创 解析 Xavier 初始化:原理、推导与实践

机制效果方差一致性原则前向传播信号强度保持稳定双向约束调和反向传播梯度强度保持稳定零均值分布避免交叉项干扰方差计算按层自适应缩放适应不同网络结构的尺寸差异实践意义Xavier 初始化使深层网络在训练初期就能保持信号和梯度的稳定性,显著缓解梯度消失/爆炸问题,为优化器提供良好的起点。尽管现代网络多使用 ReLU 族激活函数(需 He 初始化),但 Xavier 仍是理解权重初始化理论的基石,其思想被后续多种优化算法继承发展。

2025-08-14 12:17:31 1401

原创 基于XML的AOP

虽然注解方式的AOP更为流行,但XML配置在某些场景下仍有其优势,特别是在需要集中管理切面或与遗留系统集成时。

2025-08-08 17:01:02 673

原创 基于注解的AOP

最佳实践:将公共切点集中定义。

2025-08-08 16:56:38 455

原创 基于XML管理Bean

id: Bean的唯一标识符class: Bean的全限定类名。

2025-08-08 15:46:35 832

原创 基于注解管理Bean

在Spring框架中,基于注解的方式来管理Bean是现代应用开发中最常用的方式之一。这种方式比XML配置更加简洁和直观。

2025-08-08 15:43:15 295

原创 Junit 详解

JUnit 是一个开源的测试框架,专门用于 Java 程序的单元测试。它是 xUnit 家族的一部分,由 Kent Beck 和 Erich Gamma 创建。

2025-07-30 14:07:06 1129

原创 Python 基本语法详解

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名。

2025-07-29 12:01:52 653

原创 Maximum Likelihood from Incomplete Data via the EM Algorithm 阅读笔记

奠定了概率图模型和统计学习的基础。尽管后续有许多改进方法,但其核心思想(E-Step和M-Step的交替优化)仍是机器学习中的重要范式。EM算法通过迭代优化,逐步逼近真实参数,广泛应用于统计学、机器学习(如高斯混合模型、隐马尔可夫模型)等领域。,从而将缺失数据问题转化为可优化问题。因为M-Step最大化。EM算法的核心性质是。

2025-07-25 16:41:52 742

原创 测试用例设计方法详解及示例

将输入数据划分为若干类,将所有能得到同种的结果(如登陆成功、登录失败)的类称为等价类,因此只需从每个等价类中选取少量代表性数据进行测试即可,这样可以避免重复测试。但所选数据应该尽可能覆盖等价类中的各个类,因为虽然能得到同种结果,但原理不同(如用户名不合法导致的登录失败和密码错误导致的登录失败)。

2025-07-21 11:59:41 667

原创 测试用例详解

测试用例(Test Case)是软件测试的核心组成部分,它定义了测试的具体步骤、输入数据和预期结果。下面我将详细解释测试用例的各个方面。

2025-07-21 11:54:32 413

原创 测试点详解

测试点是测试设计的“基石”,通过系统化分解需求和补充隐性规则,可以显著提升测试覆盖率。实际工作中可借助工具(如XMind分解需求、Excel管理测试点)提高效率。,代表一个具体的功能、逻辑或条件,需要通过测试用例进行验证。它是测试设计的基础,确保所有需求被完整覆盖。测试点(Test Point)是测试需求分析过程中识别出的。

2025-07-21 10:21:03 1180

原创 UML活动图

活动图(Activity Diagram)是UML中用于描述系统动态行为的一种图表,它特别适合描述业务流程、工作流和算法流程。活动图本质上是一种特殊的状态图,其中大部分状态都是活动状态,转移由活动的完成触发。

2025-07-17 18:17:29 506

原创 业务逻辑的理解与整理方法

业务逻辑(Business Logic)是指软件系统中实现特定业务规则和业务流程的核心部分。它是将现实世界的业务规则和操作流程转化为计算机可执行代码的过程。

2025-07-17 16:39:21 1270

原创 测试需求分析详解及示例

测试需求分析(Test Requirement Analysis)是测试过程中的关键阶段,目的是。,可以确保测试高效、全面。结合具体案例(如电商购物车、银行转账),能更直观地理解如何落地执行。用户可以在账户间转账,需验证余额、记录交易日志,并支持短信通知。测试需求分析是测试工作的基础,直接影响测试覆盖率和质量。用户可以将商品加入购物车,修改数量,删除商品,并计算总价。,确保测试覆盖所有功能和非功能需求。

2025-07-17 16:11:38 1203

原创 软件测试的工作流程

活动:评估测试结果,编写测试报告输出:测试总结报告关键点统计测试覆盖率分析缺陷分布和趋势评估系统质量状态总结测试经验教训提出改进建议。

2025-07-17 10:07:08 1090

原创 测试点详解

测试点(Test Point)是指在软件测试过程中需要验证的具体功能点或质量特性,它是测试用例设计的基础。测试点明确了"测什么"的问题,是测试覆盖的最小单位。

2025-07-17 09:54:46 449

原创 ES6 模块化

ES6 模块化是 JavaScript 官方推出的模块系统,提供了更现代、更强大的模块管理方式。

2025-07-14 11:40:24 303

原创 JavaScript 中的 Rest 和 Spread 参数

Rest 和 Spread 是 ES6 引入的两个重要语法特性,它们都使用...符号,但在不同上下文中有不同的作用。

2025-07-14 10:58:14 307

原创 JavaScript 内存模型

JavaScript 的内存模型是理解变量存储、内存管理和性能优化的关键。

2025-07-14 09:58:26 426

简单的c语言走迷宫程序.cpp

自己编程的c语言走迷宫程序。迷宫为矩形,每一格上有数字1或2或3或4,踩到1则向上走一格,踩到2则向下走一格,踩到3则向左走一格,踩到4则向右走一格。用户在第一行输入迷宫的行数、列数、走迷宫者的初始位置,在第二行输入迷宫地图,所有输入均以逗号隔开。由程序输出走出迷宫所需步数,若不能走出,则输出进入循环前所走步数与循环长度。

2019-11-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除