《从“专业逻辑”到“智能建模”——城市用地智能化精细识别的方法探索》
一、研究背景与问题提出
研究背景:
- 中国城市进入“存量规划”时代,城市空间治理面临精细化、高效化的挑战。
- 城市用地识别是规划的基础,但传统方法依赖人工,效率低、精度有限,难以应对大规模、高复杂度的建成环境。
核心问题:
- 现有智能化识别方法多依赖单一数据或单一模型,未能模拟规划师的“专业逻辑”,导致识别精度和细粒度不足。
二、研究思路:从“专业逻辑”到“智能建模”
本文的核心思路是:解析规划师识别用地的专业逻辑,并将其转化为可计算的智能模型。
人工识别用地的三大逻辑:
- 二维形态直观判断(遥感影像)
- 建筑功能识别(POI、建筑形态)
- 三维形态感知修正(街景图像)
这三大逻辑构成了一个线性+交叉验证的识别过程,论文试图用AI技术完整还原这一过程。
三、方法构建:“智能相地”三大模块
作者提出了“智能相地”方法,包含三个智能化模块:
1. 大类用地初识模块
- 使用ResUNet-a模型,融合遥感影像与建筑矢量数据。
- 输出大类用地类型和初步边界。
2. 地块细化识别模块
- 构建建筑多维特征向量(如POI核密度、建筑高度、形态指标等)。
- 使用CatBoost分类模型,识别建筑功能,细化地块边界。
3. 地块修正识别模块
- 使用街景图像+DeepLabv3+与VGG16模型,识别建筑立面特征。
- 修正功能分类与地块边界,提升识别准确性。
四、实证研究:南京主城区案例
- 数据来源:遥感影像、POI、建筑矢量、街景图像等。
- 识别结果:
- 准确率 91.3%,召回率 88.5%
- 可识别35类用地,包括混合功能用地(如商住混合)
- 特别对教育、福利、宗教等小众用地类型建立了专项识别规则。
五、研究贡献与创新点
- 理论创新:首次系统解析并建模规划师识别用地的“专业逻辑”。
- 方法突破:提出“三模块+智能规则库”的智能识别框架,实现地块单元级精细识别。
- 技术融合:融合多源数据(遥感、POI、街景)与多模型(CNN、CatBoost、VGG16)。
六、局限性与未来展望
局限性:
- 数据误差(如POI偏移)仍影响识别精度。
- 部分用地类型(如M类工业用地)难以仅靠数据识别。
未来方向:
- 模型迁移:按城市规模与地域分类预训练模型。
- 自适应规则库:建立可迭代优化的智能规则系统。
- 人机协同:规划师转向策略制定与模型调优。
七、总结
- 本文提出了一种可解释、可迁移、高精度的城市用地智能识别方法。
- 实现了从“专业逻辑”到“智能建模”的转化,推动了规划基础工作的智能化转型。
- 为未来“人机协同”的规划模式提供了重要参考。
思考
- 这种方法是否适用于小城市或乡村地区?
- 如何平衡“数据驱动”与“规范驱动”在用地识别中的关系?
- 智能识别结果是否可直接作为规划依据?还是仅作为辅助参考?

被折叠的 条评论
为什么被折叠?



