《从“专业逻辑”到“智能建模”——城市用地智能化精细识别的方法探索》总结

《从“专业逻辑”到“智能建模”——城市用地智能化精细识别的方法探索》

一、研究背景与问题提出

研究背景

  • 中国城市进入“存量规划”时代,城市空间治理面临精细化、高效化的挑战。
  • 城市用地识别是规划的基础,但传统方法依赖人工,效率低、精度有限,难以应对大规模、高复杂度的建成环境。

核心问题

  • 现有智能化识别方法多依赖单一数据或单一模型,未能模拟规划师的“专业逻辑”,导致识别精度和细粒度不足。

二、研究思路:从“专业逻辑”到“智能建模”

本文的核心思路是:解析规划师识别用地的专业逻辑,并将其转化为可计算的智能模型

人工识别用地的三大逻辑:
  1. 二维形态直观判断(遥感影像)
  2. 建筑功能识别(POI、建筑形态)
  3. 三维形态感知修正(街景图像)

这三大逻辑构成了一个线性+交叉验证的识别过程,论文试图用AI技术完整还原这一过程。


三、方法构建:“智能相地”三大模块

作者提出了“智能相地”方法,包含三个智能化模块:

1. 大类用地初识模块
  • 使用ResUNet-a模型,融合遥感影像与建筑矢量数据。
  • 输出大类用地类型和初步边界。
2. 地块细化识别模块
  • 构建建筑多维特征向量(如POI核密度、建筑高度、形态指标等)。
  • 使用CatBoost分类模型,识别建筑功能,细化地块边界。
3. 地块修正识别模块
  • 使用街景图像+DeepLabv3+与VGG16模型,识别建筑立面特征。
  • 修正功能分类与地块边界,提升识别准确性。

四、实证研究:南京主城区案例

  • 数据来源:遥感影像、POI、建筑矢量、街景图像等。
  • 识别结果:
    • 准确率 91.3%,召回率 88.5%
    • 可识别35类用地,包括混合功能用地(如商住混合)
  • 特别对教育、福利、宗教等小众用地类型建立了专项识别规则。

五、研究贡献与创新点

  1. 理论创新:首次系统解析并建模规划师识别用地的“专业逻辑”。
  2. 方法突破:提出“三模块+智能规则库”的智能识别框架,实现地块单元级精细识别。
  3. 技术融合:融合多源数据(遥感、POI、街景)与多模型(CNN、CatBoost、VGG16)。

六、局限性与未来展望

局限性:
  • 数据误差(如POI偏移)仍影响识别精度。
  • 部分用地类型(如M类工业用地)难以仅靠数据识别。
未来方向:
  • 模型迁移:按城市规模与地域分类预训练模型。
  • 自适应规则库:建立可迭代优化的智能规则系统。
  • 人机协同:规划师转向策略制定与模型调优。

七、总结

  • 本文提出了一种可解释、可迁移、高精度的城市用地智能识别方法。
  • 实现了从“专业逻辑”到“智能建模”的转化,推动了规划基础工作的智能化转型
  • 为未来“人机协同”的规划模式提供了重要参考。

思考

  • 这种方法是否适用于小城市或乡村地区?
  • 如何平衡“数据驱动”与“规范驱动”在用地识别中的关系?
  • 智能识别结果是否可直接作为规划依据?还是仅作为辅助参考?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值