代码随想录算法训练营第31天|● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

本文介绍了如何利用贪心算法解决分发饼干问题,通过代码展示了如何通过遍历和比较两个数组来找到满足条件的饼干分配。同时提到了摆动序列的两种思路,包括贪心算法和动态规划,以及最大子序和问题的解决方案。
摘要由CSDN通过智能技术生成

理论基础

贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。

不用花心思去研究其规律, 没有思路就立刻看题解。

基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。

学完贪心之后再去看动态规划,就会了解贪心和动规的区别

分发饼干

添加链接描述
在这里插入图片描述

思路:

在这里插入图片描述

从代码中可以看出我用了一个 index 来控制饼干数组的遍历,遍历饼干并没有再起一个 for 循环,而是采用自减的方式,这也是常用的技巧。

有的同学看到要遍历两个数组,就想到用两个 for 循环,那样逻辑其实就复杂了。

代码:

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = s.length-1;//饼干的下标
        int res=0;
        for(int i=g.length-1;i>=0;i--){// 循环判断
            if(start>=0&&s[start]>=g[i]){
                res++;
                start--;
            }
        }
        return res;
    }
}

摆动序列

在这里插入图片描述

思路一 贪心算法:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

代码:

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;//默认最右边是峰值
        for (int i = 0; i < nums.length-1; i++) {
            //得到当前差值
            curDiff = nums[i+1] - nums[i];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

思路二:动态规划(想不清楚)

在这里插入图片描述

代码:

class Solution {
    public int wiggleMaxLength(int[] nums) {
        // 0 i 作为波峰的最大长度
        // 1 i 作为波谷的最大长度
        int dp[][] = new int[nums.length][2];

        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.length; i++){
            //i 自己可以成为波峰或者波谷
            dp[i][0] = dp[i][1] = 1;

            for (int j = 0; j < i; j++){
                if (nums[j] > nums[i]){
                    // i 是波谷
                    dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
                }
                if (nums[j] < nums[i]){
                    // i 是波峰
                    dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
                }
            }
        }

        return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
    }

最大子序和

在这里插入图片描述

思路:

在这里插入图片描述

在这里插入图片描述

代码:

class Solution {
    public int maxSubArray(int[] nums) {
        int sum = Integer.MIN_VALUE;
        int count = 0;
        for(int i=0;i<nums.length;i++){
            count+=nums[i];//?来判断是否结果是负数
            sum=Math.max(sum,count);// 取区间累计的最大值(相当于不断确定最大子序终止位置)
            if(count<0){//重置起始位置
                count=0;
            }
        }
        return sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值