补题の快乐

这篇博客介绍了三个算法问题的解决方案:模拟漏水屋顶的水量分布,二进制数的加法运算,以及极限求解。在漏水屋顶问题中,通过优先队列模拟水流动;在二进制加法中,按位进位处理;在极限问题中,利用洛必达法则求解。这些题目涉及数值计算和算法设计,对于提升编程能力有所帮助。
摘要由CSDN通过智能技术生成

题目链接

J.Leaking Roof

题意:
有n×n的方格,每个格子有个高度,初始时每个格子的水量为m,每个点均匀严格由高往低流。
问最终高度为零的地方的水量,其余地方输出0即可。

Sol:按照题意,从最高地方模拟流水。注意最后输出,高度不为0的地方直接输出0.

Code:

#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 550;
double w[N][N];
int a[N][N];
int n, m;
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
priority_queue<PII>q;
int get(int x, int y) {
    return x * n + y;
}
int main(){
    cin >> n >> m;
    for(int i = 0; i < n; ++i)
        for(int j = 0; j < n; ++j)
            {
                cin >> a[i][j];
                q.push({a[i][j], get(i, j)});
            }
    while(q.size())
    {
        auto t = q.top(); q.pop();
        int x = t.second / n, y = t.second % n;
        int cnt = 0;
        for(int i = 0; i < 4; ++i )
        {
            int xx = x + dx[i], yy = y + dy[i];
            if(xx >= 0 && yy >= 0 && xx < n && yy < n && a[xx][yy] < a[x][y]) ++ cnt;
        }
        if(cnt){
            double ave = 1.0 * (m + w[x][y]) / cnt;
            for(int i = 0; i < 4; ++i)
            {
                int xx = x + dx[i], yy = y + dy[i];
                if(xx >= 0 && yy >= 0 && xx < n && yy < n && a[xx][yy] < a[x][y])
                    w[xx][yy] += ave;
            }
            w[x][y] = 0;
        }
    }
    for(int i = 0; i < n; ++ i, printf("\n"))
        for(int j = 0; j < n; ++j)
        {
            if(a[i][j] == 0) printf("%.8f ", w[i][j] + m);
            else printf("0 ");
        }
    return 0;
}

M. Addition

题意:现在将所有二进制的数的值为: ∑ i = 0 n − 1 v i ⋅ s g n i ⋅ 2 i \sum_{i=0}^{n-1} v_i · sgn_i · 2^i i=0n1visgni2i
现在给出a,b的二进制表达式,以及sgn的值。求出a+b的二进制表达式(保证是有解的)
32 ≤ n ≤ 60 32 \le n \le 60 32n60

Sol:由低到高进位。假设在第i位存在进位,那么应该在 i i i i + 1 ∼ n i +1 \sim n i+1n之间某点与i的sgn值相同的位置之间的每位加上1.

Code:

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int sgn[N], a[N], b[N], c[N];
int n;
int main(){
    cin >> n;
    for(int i = 0; i < n; ++i) cin >> sgn[i];
    for(int i = 0; i < n; ++i) cin >> a[i];
    for(int i = 0; i < n; ++i) cin >> b[i];
    for(int i = 0; i < n; ++i)
    {
        c[i] += a[i] + b[i];
        while(c[i] >= 2)
        {
            c[i] -= 2;
            for(int j = i + 1; j < n; ++j)
            {
                c[j] += 1;
                if(sgn[i] == sgn[j]) break;
            }
        }
    }
    for(int i = 0; i < n - 1; ++i)
        cout << c[i] << " ";
    cout << c[n - 1];
    return 0;
}

G. Limit

题意:
求表达式的值:
lim ⁡ x → 0 ∑ i = 1 n a i ⋅ l n ( 1 + b i x ) x t \lim_{x \to 0} \frac{\sum_{i=1}^{n}a_i\cdot ln(1+b_ix)}{x^t} limx0xti=1nailn(1+bix)

Sol:洛必达,最多洛五次。

  • t=0, 答案为0
  • t=1, 洛必达一次: lim ⁡ x → 0 ∑ i = 1 n a i ⋅ b i ⋅ ( 1 + b i x ) − 1 \lim_{x \to 0} \sum_{i=1}^{n}a_i\cdot b_i \cdot (1+b_ix)^{-1} limx0i=1naibi(1+bix)1
    答案为: ∑ i = 1 n a i ⋅ b i \sum_{i=1}^{n}a_i\cdot b_i i=1naibi
  • t=2,洛两次, lim ⁡ x → 0 ∑ i = 1 n − a i ⋅ b i 2 ⋅ ( 1 + b i x ) − 2 2 \lim_{x \to 0} \frac{\sum_{i=1}^{n}-a_i\cdot b_i^2 \cdot (1+b_ix)^{-2}}{2} limx02i=1naibi2(1+bix)2 答案为: ( ∑ i = 1 n − a i ⋅ b i 2 ) / 2 (\sum_{i=1}^{n}-a_i \cdot b_i^2)/2 (i=1naibi2)/2
  • t=3,洛三次, lim ⁡ x → 0 ∑ i = 1 n a i ⋅ b i 3 ⋅ ( 1 + b i x ) − 3 3 \lim_{x \to 0} \frac{\sum_{i=1}^{n}a_i\cdot b_i^3 \cdot (1+b_ix)^{-3}}{3} limx03i=1naibi3(1+bix)3答案为: ( ∑ i = 1 n a i ⋅ b i 3 ) / 3 (\sum_{i=1}^{n}a_i \cdot b_i^3)/3 (i=1naibi3)/3
  • t=4,洛四次, lim ⁡ x → 0 ∑ i = 1 n − a i ⋅ b i 4 ⋅ ( 1 + b i x ) − 4 4 \lim_{x \to 0} \frac{\sum_{i=1}^{n}-a_i\cdot b_i^4 \cdot (1+b_ix)^{-4}}{4} limx04i=1naibi4(1+bix)4答案为: ( ∑ i = 1 n − a i ⋅ b i 4 ) / 4 (\sum_{i=1}^{n}-a_i \cdot b_i^4)/4 (i=1naibi4)/4
  • t=5,洛五次, lim ⁡ x → 0 ∑ i = 1 n a i ⋅ b i 5 ⋅ ( 1 + b i x ) − 5 5 \lim_{x \to 0} \frac{\sum_{i=1}^{n}a_i\cdot b_i^5 \cdot (1+b_ix)^{-5}}{5} limx05i=1naibi5(1+bix)5答案为: ( ∑ i = 1 n a i ⋅ b i 5 ) / 5 (\sum_{i=1}^{n}a_i \cdot b_i^5)/5 (i=1naibi5)/5
    注意:洛必达的条件是,分子分母都为0。
    预处理 t ⊆ 1 , 2 , 3 , 4 , 5 t\subseteq {1,2, 3,4,5} t1,2,3,4,5时分子的结果,然后检查 1 ∼ t − 1 1 \sim t -1 1t1分子是否为0,不是,则表示答案为 ∞ \infty 。最后输出 g [ t ] g[t] g[t]的结果。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;

const int N = 100010;

LL g[10];
LL a[N], b[N];
int n, t;
int main(){
    cin >> n >> t;
    for(int i = 1; i <= n; ++i)
    {
        cin >> a[i] >> b[i];
        g[1] += a[i] * b[i];
        g[2] += a[i] * b[i] * b[i] * -1;
        g[3] += a[i] * b[i] * b[i] * b[i];
        g[4] += a[i] * b[i] * b[i] * b[i] * b[i] * -1;
        g[5] += a[i] * b[i] * b[i] * b[i] * b[i] * b[i]; 
    }
    if(t == 0) {
        cout << 0;
    }
    else {
        int i;
        for(i = 1; i < t; ++i)
            if(g[i] != 0){
                cout << "infinity";
                break;
            }
        if(i == t) {
            if(g[t] == 0) cout << 0;
            else cout << g[t] / t;
        }
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

W⁡angduoyu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值