用正交多项式做最小二乘拟合

6.5 用正交多项式作最小二乘拟合

  我们不仅可用多项式来拟合函数,还可用一般的函数来拟合。

  定义6.1,如果

  

  当且仅当时成立,则称上线性无关,称上线性无关族。

  最小二乘法的一般提法为:对给定的一组数据,要求在函数类中找一个函数,使加权平地均和,其中

  

  这里是线性无关的函数族,上的权函数,点处的表示该点数据的重要程度。

  求误差函数的极小值点,由多元函数极值的必要条件

  

  得:

  

  这是个未知数个方程的方程组,称为法方程式。

  定义6.2称为关于点集的内积。

  这样,法方程式可简写为,记为,其中

  

  称为克莱姆行列式,记作

  定理6.2 的充要条件是线性无关。

  证明:若存在使

  对此式两边分别取与的内积得:

  

  这是一个以为未知数的齐次方程组,有非零解的充要条件是系数矩阵行列式等于零,于是的充要条件是方程有全零解,即全为0,所以线性无关。证毕。

  由于法方程有惟一解的充要条件是,因而线性无关也是法方程有惟一解的充要条件。特别当取为时,由于是在中的线性无关函数族,因而必有最小二乘解。

  用上的多项式拟合,需要解一个的线性方程组,且当取得大一此时,法方程的系数矩阵会出现病态。从系数矩阵B的形式看,里面的元素都是些内积,是否能取某些函数族,使对非对角元素全变为0?如果有这样的函数族,那么方程容易解,病态也得到改善。

  定义6.3 函数族如果在点集上满足

  

  称为点集带权的正交函数族。

  例6.7 三角函数族上是正交函数族(权).

  实际上,而

  

  

  

  如果拟合函数在上取,且是正交函数族,则法方程式成为:

  

  直接可得到,不用解线性方程组了。

  且容易估算,是否病态也容易判断。

  完成以上工作的关键在于如何构造正交函数族。

  正交多项式是最简单的正交函数族。常用的正交多项式如:Chebyshev(切比雪夫)多项式、Legendre(勒让德)多项式等。

  现在我们根据给定结点及权函数,造出带权正交的多项式族,用递推公式表示如下:

  

  其中

  

  这样给出的是正交的,这一点可以用归纳法证明。

  例6.8 已知函数表,利用正交多项式求拟合多项。

1

2

3

4

4

10

18

26

1

1

1

1

  解:设

  

  所以:

  

  

  所以:

  

  所以:

  得:

  • 8
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值