01背包问题

变量设定n(表示物品数量),maxweight (背包的最大容量), wei[max] (存放每个物品的重量)   val[max](存放每个物品的价值) 

f的初始化状态取决题目要求是恰好装满背包,还是不装满也可,下面内容针对不装满也可的情况。

应用二维数组解:动态方程f[i][j](i表示第i件物品,j表示此时背包的容量) 

                                f[i][j]的初始化状态为,f[i][0]=0,f[0][j]=0

                              for(i=1;i<=m;i++)

                              {

                                       for(j=1;j<=maxweight;j++)

                                        {

                                                   f[i][j]=max(f[i][j-wei[i]]+val[i],f[i-1][j])  (wei[i]<=j)

                                                   f[i][j]=f[i-1][j]   (wei[i]>j)

                                         }

                               }

应用一维数组解:f[i]表示背包容量为i

                              f[i]的初始状态为  f[i]=0

                                 for(i=1;i<=n;i++)
                              {
                                            for(j=m;j>=wei[i];j--)
                                             {
                                                    f[j]=f[j-wei[i]]+val[i]>f[j]?f[j-wei[i]]+val[i]:f[j];
                                             }
                               }

详细内容参考http://www.cnblogs.com/forwardpower/archive/2010/05/30/1747432.html

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值