集群调度系统
mlxaaa
这个作者很懒,什么都没留下…
展开
-
GPU集群管理系统
开源项目microsoft PAIalibaba/GPU-scheduler-for-deep-learning,论文“AntMan: Dynamic Scaling on GPU Clusters for Deep Learning”的实现原创 2020-12-08 11:34:50 · 1612 阅读 · 0 评论 -
调度器工程:如何开发一个调度器
基于k8s的调度器开发GPU集群管理相关的开源项目k8s扩展调度的方式:(1)scheduler-extender (2)scheduler-framework传统的scheduler-extender的缺陷:扩展点数量的限制:仅支持 “Predicate”、“Priority”、“Bind” 三个扩展点。即可以在这三个阶段进行扩展,但扩展的功能只能在默认的功能之后被调用。例如当增加了新的 “Predicate” 功能后,开发者只能在默认所有预选函数执行完成之后才能调用它,不能够在这之前进行调用;原创 2020-12-04 16:27:44 · 248 阅读 · 0 评论 -
kubernetes调度器源码级别分析
Kubernetes Scheduler原理分析调度器的作用是将待调度的Pod按照特定的调度算法和调度策略绑定到集群中的某个合适的Node上,并将信息写入etcd中。目标节点上的kubelet通过API Server监听到Kubernetes Scheduler产生的Pod绑定事件,获取对应的Pod清单,下载Image镜像。调度过程中涉及的三个对象:待调度Pod列表可用Node列表调度算法和调度策略默认调度的调度流程分成两步:4. 预选调度过程:遍历所有目标Node,筛选出符合要求的候选节原创 2020-12-04 09:18:44 · 300 阅读 · 0 评论 -
gpushare-scheduler-extender源码解析
阿里云在k8s中实现了在容器间对GPU的资源共享,具体实现为:aliyun/gpushare-scheduler-extenderaliyun/gpushare-device-pluginscheduler-extender与default scheduler的关联:在default scheduler的默认启动参数中添加参数--configextender-config.yaml中为extender-polilcy.json中包含了定义的extender详细拓展接口,扩产verb动词.原创 2020-08-20 15:58:14 · 1041 阅读 · 0 评论 -
没有人比我更懂集群调度器---之流行集群调度器综述
集群调度器的演进Firmament.io这片paper详细总结了目前调度的几大分类:a. 集中式调度器:代表k8s、Hadoop 、HPC 调度器。优势:调度器可以感知全局信息,因此可以基于此开发不同的调度算法来避免因为作业竞争而产生作业干扰。因为可以获取集群全局信息因此可以设计优先级抢占算法。劣势:1. 针对不同类型的作业都采用了同一种调度算法; 2.调度器对作业处理的顺序是一个问题,需要一个良好的作业优先级定义,否则可能产生队头阻塞与作业挤压的问题。b. 两级调度器:代表mesos。优原创 2020-08-11 00:10:40 · 765 阅读 · 0 评论 -
阿里云原生编程挑战赛--实现一个 Serverless 计算服务调度系统
题目简介一个简化的Faas系统分为APIServer,Scheduler,ResourceManager,NodeService(kubelet),ContainerService(container) 5个组件,系统组建可以类比与k8s。APIServer:负责函数库的查询与作业提交ListFunctions:返回所有可调用Function信息InvokeFunction(Function,Event):执行某个Function,传入Event。Scheduler:管理容器的组件,APIS原创 2020-07-22 00:11:31 · 358 阅读 · 1 评论 -
经典的资源调度算法
经典的allocation algorithm原文链接:原英文链接First Fit:寻找第一个合适的资源空间优势:因为只需要找到第一个符合条件的部分,所以该算法很快劣势:会出现占用的空间内剩余的资源比较少,产生资源碎片而导致资源浪费的情况Best Fit:寻找满足资源限制并且分配资源后剩余资源空间最少,遍历整个搜索空间去寻找最接近资源需求的空间优势:资源利用率会比ff要好很多劣势:比ff要更慢一些,并且会剩余很多难以利用的空闲小资源Worst Fit:与best Fit相反,分配剩余资源原创 2020-07-14 15:54:51 · 3036 阅读 · 0 评论 -
阿里巴巴2020年云原生编程赛赛道二(一)题目解读
阿里巴巴云原生编程赛2—实现规模化容器静态布局和动态迁移目前存在问题业界多数调度器均通过通过队列使用不同打分策略以one-by-one的方式调度容器,设计上并不感知后续待调度容器信息,串行扩容顺序会左右调度结果,进而极大地可能会导致资源的浪费。因此需要感知集群状态,并且进行容器迁移以减少资源的浪费与作业队列等待赛题描述应用建模应用信息实际以 “应用名、应用分组” 两个维度的形式呈现,同一个应用名下会有多个应用分组(appName:group=1:N)集团内部应用与应用、分组与分组之间有各种原创 2020-07-01 18:09:10 · 389 阅读 · 0 评论