AI 与 .NET 技术实操系列
文章平均质量分 93
在当今技术飞速发展的时代,人工智能(Artificial Intelligence, AI)已成为推动创新和变革的核心力量。从智能助手到自动化决策系统,AI的应用无处不在,深刻影响着我们的生活和工作方式。对于软件开发者而言,掌握AI技术不仅意味着紧跟潮流,更是在竞争激烈的市场中保持优势的关键。
AI.NET 极客圈
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI与.NET技术实操系列(九):总结篇 ── 探讨.NET 开发 AI 生态:工具、库与未来趋势
本文全面梳理了.NET生态中的AI开发生态系统,重点介绍了ML.NET、Azure AI SDK、Semantic Kernel和ONNX Runtime等核心工具的功能特性。微软通过提供本地化机器学习框架(ML.NET)、云端AI服务(Azure AI)和语言模型开发工具(Semantic Kernel),构建了一个完整的.NET AI技术栈。文章还分析了Microsoft.Extensions.AI这一统一抽象层如何简化AI服务集成,以及.NET 9在AI领域的创新。整体呈现了.NET平台为开发者提供的原创 2025-05-28 14:37:56 · 864 阅读 · 0 评论 -
AI与.NET技术实操系列(八):使用Catalyst进行自然语言处理
Catalyst是一个专为.NET开发者设计的开源自然语言处理(NLP)库,支持文本分类、实体识别等多种功能,并提供了预训练模型和详尽的API文档,极大降低了NLP技术的应用门槛。Catalyst的优势在于其无缝集成.NET生态系统、功能全面、性能优异原创 2025-05-23 10:36:55 · 1134 阅读 · 0 评论 -
AI与.NET技术实操系列(七):使用Emgu CV进行计算机视觉操作
文章摘要:本文介绍了如何在.NET环境中使用Emgu CV进行计算机视觉开发,重点展示了人脸检测的实现。Emgu CV作为OpenCV的.NET包装器,简化了计算机视觉技术的应用,使开发者能够在熟悉的.NET平台上轻松实现图像处理和对象检测任务。文章首先概述了Emgu CV的优势,包括易于集成、跨平台支持和丰富的文档资源。接着,详细讲解了Emgu CV的安装和配置步骤,并介绍了图像处理的基础操作,如图像加载、显示、保存和像素修改。最后,通过一个具体的人脸检测示例,展示了如何使用Haar级联分类器进行对象检原创 2025-05-23 10:35:48 · 1169 阅读 · 0 评论 -
AI与.NET技术实操系列(六):实现图像分类模型的部署与调用
如果在运行的时候报错说找不到模型或者label文件,可以进行如下操作:输入类中定义数据的结构如下,后续会使用TextLoader加载数据时引用该类型。此处的类名为01set;需要强调的是,类中的标签在使用 TensorFlow 模型进行评分时并没有真正使用。而是在测试预测时使用它,这样就可以将每个样本数据的实际标签与 TensorFlow 模型提供的预测标签进行比较。在处理深度神经网络时,必须使图像适应网络期望的格式。原创 2025-05-22 10:42:42 · 1238 阅读 · 0 评论 -
AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
在数据爆炸的时代,向量存储和相似性搜索技术成为处理海量数据的关键工具。本文探讨了如何在.NET中应用这些技术,通过将复杂数据转化为高维向量,并利用相似性搜索快速找到相关结果,从而提升信息检索的效率和精度。文章介绍了向量存储和相似性搜索的基本概念,并详细说明了如何在.NET中使用Milvus实现文档相似性搜索系统。系统设计包括文档向量化、向量存储、相似性搜索和结果展示等步骤。通过实践,开发者可以掌握这些技术,提升应用的智能化水平,尽管在资源需求、索引优化和实时性方面仍面临挑战。本文旨在为.NET开发者提供实用原创 2025-05-21 11:30:06 · 1017 阅读 · 0 评论 -
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
作为微软的开源项目,SK以其简洁的API、灵活的架构和强大的功能,为开发者打开了AI应用开发的大门。微软推出的Semantic Kernel(SK)为此提供了一个强大的工具,它使开发者能够在.NET环境中轻松构建基于LLMs的智能应用,大幅降低了开发门槛。由于我的ChatGpt订阅已经过期,所以接下来应用所接入的大模型换成了DeepSeek,由于DeepSeek API 与 OpenAI 的ChatCompletion的 API 格式兼容,因此我们将复用 OpenAI 连接器,里面的代码只是做了一些微调。原创 2025-04-01 10:54:38 · 1288 阅读 · 0 评论 -
AI与.NET技术实操系列(三):在 .NET 中使用大语言模型(LLMs)
微软的旗舰开发平台.NET通过与OpenAI等LLM提供商的API无缝集成,为开发者提供了强大的支持,使他们在熟悉的开发环境中即可构建智能应用程序。LLMs的出现显著拓宽了AI的应用边界。然而,LLMs的强大功能也伴随着挑战:模型的复杂性、资源需求、API调用成本、数据隐私以及伦理问题,都是开发者必须面对的现实。随着技术的不断演进,LLMs的应用前景将更加广阔,而.NET开发者正站在这一变革的前沿。LLMs是基于深度学习的自然语言处理模型,通过大规模文本数据的预训练,具备理解和生成自然语言的能力。原创 2025-03-31 13:34:39 · 871 阅读 · 0 评论 -
AI与.NET技术实操系列(二):开始使用 ML.NET
ML.NET是微软推出的开源机器学习框架,专为.NET开发者设计。它允许开发者在不离开.NET生态系统的情况下,构建、训练和部署机器学习模型。ML.NET支持多种机器学习任务,包括分类、回归、聚类、异常检测、推荐系统等,并提供了易于使用的API,使得开发者能够快速上手。与传统的机器学习框架如TensorFlow或PyTorch相比,ML.NET的优势在于其与.NET平台的无缝集成。开发者可以使用C#或F#等熟悉的语言进行开发,无需学习新的编程语言或环境。原创 2025-03-25 11:43:43 · 1261 阅读 · 0 评论 -
AI与.NET技术实操系列(一):开篇
AI正在重塑软件开发的未来,而.NET平台为开发者提供了强大的支持,使他们能够轻松拥抱这一变革。本文通过介绍AI的基础概念、.NET平台的支持、实际应用场景以及未来展望,旨在为有一定.NET经验的开发者提供一个全面而深入的指南。从ML.NET到Semantic Kernel,再到Azure AI Services,.NET生态系统为开发者提供了多样化的工具,帮助他们将AI集成到应用程序中。无论是构建智能客服系统,还是优化业务流程,AI与.NET的结合都为开发者开辟了新的可能性。原创 2025-03-24 15:25:48 · 983 阅读 · 0 评论
分享