Codeforces 1325 Div.2 笔记
感想
又是掉分的一场。因为记错了时间而迟到了一个小时,只做出了AB题。感觉这次的思维量太大了,感觉这次出得比较好的是A题和C题(因为D题当时没看)。还有要求稳,B题提交了5次,根本没有分数可言。以后要注意。掉到1300Rating了,跟1900感觉距离越来越大了。
题目
A EhAb AnD gCd
解析
给定一个整数 n n n,要求出两个整数 x , y x, y x,y,使得 G c d ( x , y ) + L c m ( x , y ) = n Gcd(x, y) + Lcm(x, y) = n Gcd(x,y)+Lcm(x,y)=n。
乍一看数据比较大, 1 ≤ n ≤ 1 0 9 1 \le n \le 10^9 1≤n≤109,套Gcd和Lcm的话绝对超时,但仔细想了一下,Gcd(1, n - 1)一定是1,Lcm(1, n - 1)一定是n - 1,加起来就好了。
代码
#include <bits/stdc++.h>
typedef long long ll;
ll nextInt()
{
ll num = 0;
char c = 0;
bool flag = false;
while ((c = std::getchar()) == ' ' || c == '\r' || c == '\t' || c == '\n');
if (c == '-')
flag = true;
else
num = c - 48;
while (std::isdigit(c = std::getchar()))
num = num * 10 + c - 48;
return (flag ? -1 : 1) * num;
}
int main(int argc, char **argv)
{
int t = nextInt();
while (t--)
{
ll n = nextInt();
std::cout << 1 << ' ' << n - 1 << std::endl;
}
}
B CopyCopyCopyCopyCopy
解析
给定一组数 A i A_i Ai,由 n n n个数组成。求出将该数组复制 n n n次后,形成的新数组中的最长严格上升子序列。
这题我交了5遍。第一次用了 n 2 n^2 n2的LIS,超时。第二次用了 n l o g 2 n n log_2 n nlog2n的LIS,超时。第三次我发现,既然是复制 n n n次,那么没必要一个个求啊,首位看只要能构成上升就都可以取到。于是交了个map判重,超时。后来改成了set输出size(),玄学超时。改了一下将set定义在外面,交上去就过了。感觉要想好再往上交。
代码
#include <bits/stdc++.h>
typedef long long ll;
ll nextInt()
{
ll num = 0;
char c = 0;
bool flag = false;
while ((c = std::getchar()) == ' ' || c == '\r' || c == '\t' || c == '\n');
if (c == '-')
flag = true;
else
num = c - 48;
while (std::isdigit(c = std::getchar()))
num = num * 10 + c - 48;
return (flag ? -1 : 1) * num;
}
std::set<int> s;
int main(int argc, char **argv)
{
int T = nextInt();
while (T--)
{
s.clear();
ll n = nextInt();
for (int i = 1; i <= n; i++)
{
ll x = nextInt();
s.insert(x);
}
std::cout << s.size() << std::endl;
}
}
C Ehab and Path-etic MEXs
解析
给定一颗有 n n n个节点 n − 1 n-1 n−1条边的树,要求在所有边上标上 0 , 1 , 2 , … , n − 2 0,1,2,\ldots , n-2 0,1,2,…,n−2,定义 M E X ( u , v ) MEX(u,v) MEX(u,v)为该树上,u到v的简单路径要经过的边除外,树上所有边的值中的最小值,使得对于任意的 u , v u,v u,v的 M E X ( u , v ) MEX(u,v) MEX(u,v)的最大值尽可能地小。
这题光读题就读了40min,最后也是没调出来。第二天想了一下发现,统计一个访问次数,次数是1的点即为叶子节点,让每一个叶子节点所经过的路径变成最小的距离即可。
代码
#include <bits/stdc++.h>
typedef long long ll;
ll nextInt()
{
ll num = 0;
char c = 0;
bool flag = false;
while ((c = std::getchar()) == ' ' || c == '\r' || c == '\t' || c == '\n');
if (c == '-')
flag = true;
else
num = c - 48;
while (std::isdigit(c = std::getchar()))
num = num * 10 + c - 48;
return (flag ? -1 : 1) * num;
}
size_t _Siz = 109231;
int main(int argc, char **argv)
{
int vis[_Siz] = { 0 }, ans[_Siz] = { 0 }, pos[_Siz] = { 0 };
std::memset(ans, 0xff, sizeof ans);
int n = nextInt();
for (int i = 1; i < n; i++)
{
int x = nextInt(), y = nextInt();
vis[x]++;
vis[y]++;
pos[x] = i, pos[y] = i;
}
int tot = 0;
for (int i = 1; i <= n; i++)
if (vis[i] == 1)
ans[pos[i]] = tot++;
for (int i = n - 1; i >= 1; i--)
if (ans[i] == -1)
ans[i] = tot++;
for (int i = 1; i < n; i++)
{
if (ans[i] == n - 1)
ans[i] = 0;
std::cout << ans[i] << '\n';
}
return 0;
}
D Ehab the Xorcist
解析
构造一个尽可能短的长度为 n n n的数组,使得该数组所有元素的和为给定值 v v v,所有元素异或和为给定值 u u u。
昨晚上床之后想到,要先判断是否有解。因为如果 v < u v < u v<u的话是一定无解的。
其次,若异或和的个位为1,则该数组中,个位为1的个数必为奇数,则和的个位也应为1。同理,若异或和的个位为0,则和的个位也应为0。
所以,当且仅当 v ≥ u v\ge u v≥u且 ( v − u ) ∣ 2 (v-u)|2 (v−u)∣2的情况下, u , v u, v u,v有解。
显然,在 u , v u, v u,v有解的情况下, u , ( v − u ) / 2 , ( v − u ) / 2 {u,(v-u)/2,(v-u)/2} u,(v−u)/2,(v−u)/2是一种始终有解的构造,所以我们只需要考虑特判 n < 3 n<3 n<3的情况。
n=0:在u=v=0的情况下有解。
n=1:在u=v的情况下有解。
n=2:在{(v+u)/2、(v-u)/2}满足条件的情况下成立。
代码
#include <bits/stdc++.h>
typedef long long ll;
ll nextInt()
{
ll num = 0;
char c = 0;
bool flag = false;
while ((c = std::getchar()) == ' ' || c == '\r' || c == '\t' || c == '\n');
if (c == '-')
flag = true;
else
num = c - 48;
while (std::isdigit(c = std::getchar()))
num = num * 10 + c - 48;
return (flag ? -1 : 1) * num;
}
ll n, m;
int main(int argc, char **argv)
{
n = nextInt();
m = nextInt();
if (n > m || (m - n) % 2 != 0)
{
puts("-1");
return 0;
}
else if (n == m && n == 0)
{
puts ("0");
}
else if (n == m)
{
std::cout << 1 << '\n' << n << '\n';
}
else
{
long long x = (n + m) / 2, y = n;
long long a = x, b = x - y;
if ((a + b) == m && (a ^ b) == n)
std::cout << 2 << '\n' << a << ' ' << b << '\n';
else
std::cout << 3 << '\n' << n << ' ' << (m - n) / 2 << ' ' << (m - n) / 2);
return 0;
}
return 0;
}