[250317] Gemma 3 开发者指南:更强大、多模态的开源模型 | 中国发布《人工智能生成合成内容标识办法》

Gemma 3 开发者指南:更强大、多模态的开源模型

Google 最新推出的 Gemma 3 是 Gemma 开源模型家族中最强大、最先进的版本,在之前的版本基础上进行了重大改进,并融合了社区的反馈,新增了更长的上下文、多模态支持等众多功能。

新特性:

  • 多模态:
    支持视觉语言输入和文本输出,可分析图像、回答图像相关问题、比较图像、识别物体,甚至识 别图像中的文本。得益于自适应窗口算法,Gemma 3 能够处理高分辨率和非方形图像。
  • 更长上下文:
    支持高达 128k token 的上下文窗口。
  • 多语言支持:
    理解超过 140 种语言。
  • 增强能力:
    数学、推理和聊天能力得到提升,包括结构化输出和函数调用。
  • 多种尺寸:
    提供 1B、4B、12B 和 27B 四种尺寸的预训练模型和通用指令微调版本,可根据自身需求进行 微调。

构建过程:

Gemma 3 的预训练和后训练过程结合了蒸馏、强化学习和模型合并等技术,从而提升了其在数学、编码和指令遵循方面的性能。它使用新的分词器,更好地支持 140 多种语言,并在 Google TPU 上使用 JAX 框架进行了训练。后训练过程包含四个组成部分:

  • 从更大的指令模型到 Gemma 3 预训练检查点的蒸馏。
  • 基于人类反馈的强化学习 (RLHF),使模型预测与人类偏好对齐。
  • 基于机器反馈的强化学习 (RLMF),增强数学推理能力。
  • 基于执行反馈的强化学习 (RLEF),提高编码能力。

这些更新显著提升了模型的数学、编码和指令遵循能力,使其在 LMArena 中的得分达到 1338,成为顶级的紧凑型开源模型。

多模态:

Gemma 3 集成了基于 SigLIP 的视觉编码器,可以处理图像和视频输入。例如,可以根据空调面板的图像,准确识别出控制温度的按钮。

来源:

https://developers.googleblog.com/en/introducing-gemma3/

中国发布《人工智能生成合成内容标识办法》,剑指深度伪造等风险

中国国家互联网信息办公室、工业和信息化部、公安部、国家广播电视总局联合印发了《人工智能生成合成内容标识办法》(以下简称《办法》),将于2025年9月1日起施行。此举旨在规范人工智能生成内容标识,打击深度伪造等风险,保护公民、法人和其他组织的合法权益,维护社会公共利益。

《办法》的核心内容包括:

  • 明确标识范围:
    涵盖利用 AI 技术生成的文本、图片、音频、视频、虚拟场景等多种形式的内容。
  • 区分标识方式:
    规定了“显式标识”和“隐式标识”两种方式。显式标识以文字、声音、图形等方式呈现,方便用户明显感知;隐式标识则通过技术手段嵌入文件数据中,不易被用户察觉,例如数字水印。
  • 细化标识要求:
    根据不同内容类型(文本、音频、图片、视频、虚拟场景等),规定了具体的显式标识添加位置和方式。同时,要求在文件元数据中添加隐式标识,包含生成内容属性、服务提供者信息、内容编号等。
  • 规范传播行为:
    规定了网络信息内容传播服务提供者在发布生成合成内容时的核验、标识义务,以及对疑似生成合成内容的处理方式。
  • 强调平台责任:
    要求互联网应用程序分发平台在应用上架审核时,核验提供 AI 生成合成服务的应用的标识相关材料。
  • 明确用户责任:
    用户发布生成合成内容时,应当主动声明并使用平台提供的标识功能进行标识。同时,禁止恶意删除、篡改、伪造标识等行为。
  • 强化监管措施:
    相关部门将依据职责,对违反《办法》的行为进行处理。

《办法》的出台,标志着中国对人工智能生成内容的监管迈出了重要一步。通过明确标识要求和责任主体,可以有效提高生成合成内容的透明度,帮助用户区分真实信息和 AI 生成内容,从而降低深度伪造、虚假信息传播等风险,维护网络空间安全和社会秩序。 这也有利于促进人工智能技术的健康发展,推动其在各个领域的积极应用。

来源:

https://www.cac.gov.cn/2025-03/14/c_1743654684782215.htm

更多内容请查阅 : blog-250317

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值