状态空间中相干信息结构的测量与分析
1. 相干信息结构的量化基础
相干信息结构十分微妙,个体信息动态轮廓往往难以揭示其复杂性,然而它可能支撑着其他尺度上的相干计算。为了量化相干信息结构,我们应从状态空间图入手,因为这些图既满足相关要求,又能识别出清晰和隐藏的结构。
具体而言,相干信息结构应被量化为局部信息动态状态空间中各值之间的逻辑关系。为了保持最大的无偏性,测量应在多维信息状态空间中进行,而非二维投影图。在确定测量所包含的信息动态时,需要考虑所有指向给定目标的信息源。一种方法是考察由 $aX(n, k)$ 和增量条件互信息项构成的状态空间,但这种方法存在信息源考虑顺序的模糊性,且随着条件源的增加,会引入冗余信息。因此,更合适的方法是考虑可分离信息的底层测量状态空间,即 $aX(n, k)$ 和所有源 $Y$ 的 $tY→X(n, k)$ ,同时可分离信息本身不应包含在测量中,因为它包含了其组成变量的冗余信息。
2. 状态空间结构的测量方法
测量二维或多维模式的结构是一项极具挑战性的任务。为了测量这些测量值状态空间中的结构,我们选择了多信息(见相关公式),因为它能够衡量给定变量之间的依赖程度,这与我们测量信息动态变量之间逻辑关系的意图相契合。
我们提出将状态空间多信息作为衡量由于因果源 ${VX \ X}$ 导致的信息目标 $X$ 处相干信息结构的指标,具体公式如下:
[
I_{X}^{ss} = \lim_{k \to \infty}I_{X}^{ss}(k)
]
[
I_{X}^{ss}(k) = I\left( aX(n, k); t_{Y_1 \to X}(n, k); t_{Y