tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True/False)
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
learning_rate = 0.1
decay_rate = 0.96
global_steps = 1000
decay_steps = 100
global_ = tf.Variable(tf.constant(0))
c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False)
T_C = []
F_D = []
with tf.Session() as sess:
for i in range(global_steps):
T_c = sess.run(c,feed_dict={global_: i})
T_C.append(T_c)
F_d = sess.run(d,feed_dict={global_: i})
F_D.append(F_d)
plt.figure(1)
plt.plot(range(global_steps), F_D, 'r-')
plt.plot(range(global_steps), T_C, 'b-')
plt.show()
分析:
初始的学习速率是0.1,总的迭代次数是1000次,如果staircase=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率,如果是False,那就是每一步都更新学习速率。红色表示False,绿色表示True。
计算方式:decayed_lr = lr * decay_rate ^ (global_step/decay_steps)