tf.train.exponential_decay的用法

tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True/False)

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  

learning_rate = 0.1  
decay_rate = 0.96  
global_steps = 1000  
decay_steps = 100  

global_ = tf.Variable(tf.constant(0))  
c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)  
d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False)  

T_C = []  
F_D = []  

with tf.Session() as sess:  
    for i in range(global_steps):  
        T_c = sess.run(c,feed_dict={global_: i})  
        T_C.append(T_c)  
        F_d = sess.run(d,feed_dict={global_: i})  
        F_D.append(F_d)  


plt.figure(1)  
plt.plot(range(global_steps), F_D, 'r-')  
plt.plot(range(global_steps), T_C, 'b-')  

plt.show()  

分析:
初始的学习速率是0.1,总的迭代次数是1000次,如果staircase=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率,如果是False,那就是每一步都更新学习速率。红色表示False,绿色表示True。

计算方式:decayed_lr = lr * decay_rate ^ (global_step/decay_steps)

学习率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>