步步拾遗

私信 关注
耐耐~
码龄4年
  • 574,392
    被访问量
  • 86
    原创文章
  • 16,316
    作者排名
  • 100
    粉丝数量
  • 于 2017-07-11 加入CSDN
获得成就
  • 获得197次点赞
  • 内容获得42次评论
  • 获得493次收藏
荣誉勋章
兴趣领域
  • #产品/运营
    #产品运营
TA的专栏
  • 数学
    5篇
  • 机器学习
    4篇
  • 基础知识类
    10篇
  • python
    29篇
  • Ubuntu
    3篇
  • tensorflow
    25篇
  • 停更专栏
  • PyQt(停更)
    23篇
  • js(停更)
    9篇
  • HTML(停更)
    8篇
  • 爬虫(停更)
    12篇
  • CSS(停更)
    2篇
  • ASP(停更)
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

概率论与数理统计(二)

本文主要讲一下如何对随机事件求概率这个问题,这个问题听起来是很简单的,但实际上这里面还是有一点点东西的。文章目录三大结构离散的样本空间连续的样本空间总结三大结构当我们讨论某一随机事件的概率时,我们一般是在一个框架下讨论的,这个框架包含三个结构:样本空间(sample space),事件(event)和几率测度(probability measure)。sample space:记作Ω\OmegaΩ,样本空间,即某一随机现象发生的所有可能取值集合。event:sample space的任一子集叫做
原创
285阅读
0评论
0点赞
发布博客于 7 月前

概率论与数理统计(三)

接下来讨论的对象就是随机变量了,而不是事件。随机变量可以由事件映射得到,本文就不详细讲这个了,有时间再补充。现在讲一下随机变量的基本类型与随机标量的独立性。离散型随机变量当我们的sample space Ω\OmegaΩ的outcome都是discrete的时候,从事件的sample space映射到随机变量的sample space的outcome也是discrete的,这样的话我们称该随机变量是离散的。如掷骰子只有6种可能的结果;某路口一个月车祸的数量可以取0,1,2,…对于离散型随机变量,我们通
原创
133阅读
0评论
0点赞
发布博客于 7 月前

概率论与数理统计(一)

本文主要讲了什么是事件,事件与概率的关系,事件常见的分类,事件的基本关系及运算,什么是条件概率以及由条件概率引出的事件独立性,由事件独立性引出来的概率0乘法定理,概率的三条公理。文章目录事件与概率概率的三条公理事件的关系与运算条件概率与事件的独立性事件与概率当我们讲概率呢,我们得首先明确概率的对象,即什么东西拥有概率,纵观各种概率论教科书,第一章都是先从事件讲起,比如“明天下雨”这一事件发生的概率是多少呀?即概率描述的对象一般都是事件。在概率论中,什么是事件呢?事件就是对某种情况的描述,比如我可以这
原创
172阅读
0评论
0点赞
发布博客于 7 月前

高斯判别分析(GDA)和朴素贝叶斯(NB)

生成模型和判别模型监督学习一般学习的是一个决策函数y=f(x)y=f(x)y=f(x)或者是条件概率分布p(y∣x)p(y|x)p(y∣x)。判别模型直接用数据学习这个函数或分布,例如Linear Regression和Logistic Regression。生成模型是先用数据学习联合概率分布p(x,y)p(x,y)p(x,y),然后使用贝叶斯公式求p(y∣x)p(y|x)p(y∣x)p(...
转载
170阅读
0评论
0点赞
发布博客于 1 年前

详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。下文将详细说明MLE和MAP的思路与区别。但别急,我们先从概率和统计的区别讲起。概率和统计是一个东西吗?概率(probabilty)和...
转载
233阅读
0评论
1点赞
发布博客于 1 年前

python进阶(小白也能看懂)——装饰器浅谈(一)

python进阶(小白也能看懂)——装饰器(一)第四篇文章目录python进阶(小白也能看懂)——装饰器(一)1.函数基础知识例子1.1例子1.2例子1.3例子1.42.不带参数的装饰器3.带参数的装饰器参考1.函数基础知识谈装饰器前,先了解一下函数的基础知识python中一切都是对象,函数也是对象,可以将一个函数赋值给另一个变量函数可以嵌套,即在一个函数内部定义另一个函数函数...
原创
165阅读
0评论
0点赞
发布博客于 1 年前

python进阶(小白也能看懂)——Map、Filter、Reduce

python进阶(小白也能看懂)——Map、Filter、Reduce第三篇Map、Filter、Reduce是python中常用的函数,使用这些函数能够给我们带来很多便捷。Mapmap(function_to_apply, list_of_inputs)第一个参数是工具函数(工具函数是我自己起的名,因为这个函数就像一个工具一样,用来处理我们的数据),第二个参数是列表,map的作...
原创
172阅读
0评论
0点赞
发布博客于 1 年前

python进阶(小白也能看懂)——生成器与迭代器

python进阶(小白也能看懂)——生成器与迭代器第二篇文章目录python进阶(小白也能看懂)——生成器与迭代器1 例子1.1 生成器1.2 迭代器2 什么是生成器与迭代器2.1 迭代器与可迭代对象的区别2.2 为什么使用迭代器2.3 生成器——一种特殊的迭代器3 参考1 例子先给出生成器与迭代器的例子,然后详细讲解需要理解的知识。1.1 生成器# 生成器a = (i+1 fo...
原创
255阅读
0评论
0点赞
发布博客于 1 年前

python进阶(小白也能看懂)——*args与**kwargs的使用

python进阶(小白也能看懂)——*args与**kwargs的使用== 本文是在***的基础上写的==
原创
162阅读
0评论
1点赞
发布博客于 1 年前

pytorch中的CrossEntropyLoss

这里主要探讨torch.nn.CrossEntropyLoss函数的用法。使用方法如下:# 首先定义该类loss = torch.nn.CrossEntropyLoss()#然后传参进去loss(target, label)第一个参数的维度为m1 * m2,第二个参数维度为m1。我们在做多分类问题的时候,target应该为我们网络生成的值,而label则是非one-hot类型的值。...
原创
4223阅读
0评论
4点赞
发布博客于 2 年前

nn.BCELoss与nn.CrossEntropyLoss的区别

以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题。可以知道,BCELoss是Binary CrossEntropyLoss的缩写,BCELoss CrossEntropyLoss的一个特例,只用于二分类问题,而CrossEntropyLoss可以用于二分类,也可以用于多分类。不过我重新查阅了一下资料,发现同样是处理二分类问题,BCELoss与Cr...
原创
16510阅读
3评论
12点赞
发布博客于 2 年前

ubuntu设置jupyter

生成配置文件:jupyter-notebook --generate-config设置默认路径:(建议使用绝对路径,~在配置中代表默认工作区,如果不是第一次设置容易出错)c.NotebookApp.notebook_dir = ‘/home/dnt/桌面/work’Ubuntu18.04下给Jupyter-NoteBook设置默认工作路径...
原创
281阅读
0评论
1点赞
发布博客于 2 年前

转置卷积/反卷积

pytorch中反卷积的函数为:class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)参数的含义如下:...
原创
168阅读
0评论
0点赞
发布博客于 2 年前

torchvision.transforms包的使用

torchvision.transforms是专门用来对数据进行相关的处理。我们可完成的操作如下:归一化PIL.Image / numpy.ndarray 与Tensor的相互转化对PIL.Image进行裁剪、缩放等操作通常,在使用torchvision.transforms,我们通常使用transforms.Compose将transforms组合在一起。PIL.Image/num...
原创
2287阅读
0评论
0点赞
发布博客于 2 年前

pytorch的梯度计算以及backward方法

tensors:tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation graph(DCG)——即动态计算图。import torchimport numpy as np# 方式一x = torch.randn(2,2, requir...
原创
21185阅读
1评论
8点赞
发布博客于 2 年前

np的矩阵乘法

np.dot()方法 —— 矩阵乘法Usage:np.dot( matrixA, matrixB ) or matrix.dot(matrixB)example:import numpy as np# define two matrixs hereone = np.array([[1,2,3]])two = np.array([[4],[5],[6]])# let's...
原创
1484阅读
0评论
0点赞
发布博客于 2 年前

numpy.random.normal

函数原型:np.random.normal(loc,scale,size),该函数用于生成高斯随机分布是随机数,其中loc表示均值,scale表示方差,size表示输出的sizeexampleimport numpy as npprint(np.random.normal(size=(2,2), scale=1, loc=0))输出结果[[-0.22615645 0.0839...
原创
3257阅读
1评论
1点赞
发布博客于 2 年前

python中的__init__()和__call__()函数

前言在Python的class中有一些函数往往具有特殊的意义。init()和__call__()就是class很有用的两类特殊的函数。__init__()在Python中,init()函数的意义等同于类的构造器(同理,del()等同于类的析构函数)。因此,init()方法的作用是创建一个类的实例。__call__()为了将一个类实例当做函数调用,我们需要在类中实现__call__()方法...
原创
206阅读
0评论
0点赞
发布博客于 2 年前

pytorch 常用的 loss function

1 nn.L1Lossloss(Xi,yi)=∣Xi−yi∣ loss(X_{i}, y_{i}) = |X_{i}-y_{i}|loss(Xi​,yi​)=∣Xi​−yi​∣这里我们亲自做一下实验看看具体效果# torch.nn.L1Lossimport torchl1_loss_fn = torch.nn.L1Loss(reduce=False, size_average=Fal...
转载
6551阅读
1评论
0点赞
发布博客于 2 年前

交叉熵

信息论交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。1 信息量每件事情都有一定的发生概率,不同概率的事情发生带来的信息量是不同的。举例来说:事件A:巴西队进入了2018世界杯决赛圈。事件B:中国队进入了2018世界杯决赛圈。可以知道,B事件发生的信息量是比A事件发生的信息量要大的,因为A事件的概率明显比B事件的概率大。那么我们如何来衡量不同事件发生带来的信...
转载
79阅读
0评论
0点赞
发布博客于 2 年前

ubuntu18.04 更改apt源

前言:为什么要更改源1.什么是软件源?源,在Ubuntu下,它相当于软件库,需要什么软件,只要记得正确的软件名就可以用命令安装:sudo apt-get install 软件名如果源里面没有这个软件,则无法安装该软件。2.通过源安装软件的原理其实通过软件源安装软件的原理非常简单,Ubuntu 系统中自带了一个名为 apt的软件包管理工具,它的主要功能就是负责 Ubuntu 系统中所有软...
原创
6274阅读
0评论
1点赞
发布博客于 2 年前

TCP释放连接后实现端口的立即复用

python立即释放端口背景在使用python进行socket编程时,如果某一个端口被绑定并进行TCP连接后,调用socket.close()方法并不会立即释放该端口。根据TCP终止连接的规则,还需要经过一个TIME_WAIT的等待时间才会彻底释放端口。为了在连接断开后立即实现端口的复用,可以实现setsockopt()函数来实现。下面看代码import sockettcp1 = s...
原创
3143阅读
0评论
0点赞
发布博客于 2 年前

向量范数与矩阵范数的理解

参考:https://blog.csdn.net/jack_20/article/details/72896459https://blog.csdn.net/lqy201117/article/details/51757513
转载
1130阅读
0评论
0点赞
发布博客于 3 年前

范数和机器学习中的范数

什么是范数?我们知道距离的定义是一个宽泛的概念,只要满足非负、自反、三角不等式就可以称之为距离。范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。在数学上,范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何...
转载
1322阅读
0评论
0点赞
发布博客于 3 年前

理解图像中卷积操作的含义

原文地址:https://blog.csdn.net/chaipp0607/article/details/72236892?locationNum=9&fps=1上文用生动的例子来解释卷积记载了卷积的含义,现在就来看看卷积在图像处理中的应用吧。(ps:本文大部分内容系转载大神的博客,现在csdn强制图片水印,实在感到很无奈!!!)数字图像处理中卷积数字图像是一个二维的离散信号,对...
转载
10986阅读
0评论
13点赞
发布博客于 3 年前

用生动的例子来解释卷积

前言学了几周的深度学习,前几天感觉基础不太牢固,于是今天便从卷积神经网络开始复习,把脑子中不太清楚的概念全部弄清楚。先在这里说清楚,本文大部分例子都是参考其他的博客,其他的都是我自己的理解。1. 从卷毛巾开始理解卷积首先看看卷积的定义:这两个定义都有一个共同的特征:让n不断变化,得到下面动图里面的直线:如果遍历这些直线,就好比,把毛巾沿着角卷起来并积分(也相当于求和):2....
转载
2497阅读
1评论
4点赞
发布博客于 3 年前

【C++】 vector.erase()

函数原型erase的函数原型有两种形式:iterator erase(iterator position);iterator erase(iterator first, iterator last);第一个表示删除某一固定位置的元素第二个可以删除从某个位置至另外一个 位置之间的元素问题:如何删除vector中多个值为val1的元素三种方法:代码一:for(vector&l...
转载
15140阅读
0评论
2点赞
发布博客于 3 年前

nlp语义理解

给你一篇文章或者一个句子,人们在理解这些句子时,头脑中会进行上下文的搜索和知识联想。通常情况下,人在理解语义时头脑中会搜寻与之相关的知识。知识图谱的创始人人为,构成这个世界的是实体,而不是字符串,这从根本上改变了过去搜索的体系。语义理解其实是基于知识,概念和这些概念间的关系。人们在解答问题时,往往会讲述与这个问题相关的知识,这是语义理解的过程。这种机制完全不同于人对图像或者语音的认识。CNN在图像...
转载
1536阅读
0评论
1点赞
发布博客于 3 年前

常见函数说明

numpy.random.shuffle用途:打乱序列的顺序用法:numpy.random.shuffle([list,iterable]),返回值为None,直接更改列表的顺序样例:np.random.shuffle(参数)->np.random.shuffle([1,2,3])注意:如果参数是二维的数据,则只在第一维度上更改顺序 tensorflow.transpose用...
原创
1380阅读
0评论
0点赞
发布博客于 3 年前

向量空间模型(Vector Space Model)的理解

https://www.cnblogs.com/hapjin/p/8687527.html
转载
1314阅读
0评论
0点赞
发布博客于 3 年前

tensorflow在训练的时候权重是nan,如何解决

https://blog.csdn.net/zbzb1000/article/details/65626297
原创
1114阅读
0评论
0点赞
发布博客于 3 年前

使用numpy生成one_hot

https://blog.csdn.net/zhongranxu/article/details/79332154
转载
2160阅读
0评论
0点赞
发布博客于 3 年前

中心化(又叫零均值化)和标准化(又叫归一化)

https://blog.csdn.net/GoodShot/article/details/80373372
原创
2812阅读
0评论
0点赞
发布博客于 3 年前

利用卷积神经网络提取特征

https://blog.csdn.net/jnulzl/article/details/51440055https://blog.csdn.net/lcy7289786/article/details/68958662
转载
18389阅读
0评论
1点赞
发布博客于 3 年前

L2正则化方法

在机器学习中,无论是分类还是回归,都可能存在由于特征过多而导致的过拟合问题。当然解决的办法有(1)减少特征,留取最重要的特征。(2)惩罚不重要的特征的权重。但是通常情况下,我们不知道应该惩罚哪些特征的权重取值。通过正则化方法可以防止过拟合,提高泛化能力。先来看看L2正则化方法。对于之前梯度下降讲到的损失函数来说,在代价函数后面加上一个正则化项,得到https://www.cnblogs....
转载
2994阅读
0评论
0点赞
发布博客于 3 年前

为什么L1稀疏,L2平滑?

L1和L2正则常被用来解决过拟合问题。而L1正则也常被用来进行特征选择,主要原因在于L1正则化会使得较多的参数为0,从而产生稀疏解,将0对应的特征遗弃,进而用来选择特征。  但为什么L1正则会产生稀疏解呢?这里利用公式进行解释。假设只有一个参数为w,损失函数为L(w),分别加上L1正则项和L2正则项后有:假设L(w)在0处的倒数为d0,即则可以推导使用L1正则和L2正则时的导数。引入...
转载
5408阅读
0评论
3点赞
发布博客于 3 年前

anaconda

Anaconda与conda区别conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。 conda的设计理念——conda将几乎所有的工具、第三方包都当做package对待,甚至包括python和conda自身 Anaconda则是一个打包的集合,里面预装好了conda、某个版本...
转载
120阅读
0评论
0点赞
发布博客于 3 年前

shape的各种获取、更改以及设置方式辨析

各种shape获取和shape设置以及更改1. shape获取tensor.get_shape:只有tensor才有这个方法,(相对于op来说的),用于返回该 tensor的维度,返回的是一个数组。不需要在session里面使用。x.get_shape()tensor.shape:用法同tensor.get_shape()类似。如...
原创
541阅读
0评论
0点赞
发布博客于 3 年前

tf里面InteractivateSession()与Session()的区别

sd
原创
760阅读
3评论
1点赞
发布博客于 3 年前

使用tensorflow书写逻辑回归

书写中存在的问题 mnist读取训练集 mnist.train.images mnist.train.labels读取训练集的长度 mnist.train.num_examples 函数tf.placeholder() 必须指定数据类型,shape可以不指定,这样就可以使用多种shape了 tf.Variable() 必须给定初始值tf.reduce_m...
原创
160阅读
0评论
0点赞
发布博客于 3 年前

tf.name_scope与tf.variable_scope

1.scope是干什么的顾名思义“scope”的意思是“范围”,那么name_scope和variable_scope就是针对name所做的范围定义。典型的 TensorFlow 可以有数以千计的节点,在构建各op的过程中,命名要做到不重复,那么在编写程序的时候就要特别注意,例如“x”、“y”、”W”、”B”甚至“weight”等经常使用的变量/常量命名就很可能会重复,否则就要增加一个字符串来...
原创
357阅读
0评论
0点赞
发布博客于 3 年前

记录

https://www.w3cschool.cn/tensorflow_python/tensorflow_python-wxuy2nm6.html to_int64 https://blog.csdn.net/m0_37870649/article/details/80963053 relu详解 https://blog.csdn.net/u013713117/article/details...
原创
59阅读
0评论
0点赞
发布博客于 3 年前

tf.Variable()、tf.get_variable()

- tf.Variable()W = tf.Variable(<initial-value>, name=<optional-name>)用于生成一个初始值为initial-value的变量。必须指定初始化值-tf.get_variable()W = tf.get_variabl
原创
181阅读
0评论
0点赞
发布博客于 3 年前

what does tf.no_op do and tf.control_dependencies work?

- 控制依赖with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') #train_op does nothin或者train_op = tf.group(train_step, variables_averages_op)贴上st...
原创
1540阅读
0评论
1点赞
发布博客于 3 年前

tf.nn.sparse_softmax_cross_entropy_with_logits()与tf.nn.softmax_cross_entropy_with_logits的差别

这两个函数的用法类似sparse_softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None)唯一的区别是sparse的labels是int类型,而非sparse的labels是one-hot类型。具体代码用法import tensorflow as tf#...
原创
2451阅读
3评论
2点赞
发布博客于 3 年前

tf.train.exponential_decay

函数- tf.train.exponential_decay tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 功能:实现指数衰减学习率内部代码实现decayed_learning_rate...
原创
405阅读
0评论
0点赞
发布博客于 3 年前

tensorflow常见函数——clip_by_value、numpy.random.RandomState、argmax

常见简单函数用法- tf.clip_by_value()tf.clip_by_value(V, min, max)功能:截取在V,使V里面的各个元素在min和max之间具体代码用法import tensorflow as tfv = tf.constant([[1.0, 2.0, 4.0],[4.0, 5.0, 6.0]])result = tf.clip_by_v...
原创
154阅读
0评论
0点赞
发布博客于 3 年前

tf.nn.conv2d()方法

tf.nn.conv2d是用来实现卷积的方法 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)除去name参数用以指定该操作的name,与方法有关的一共五个参数:第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_heigh...
原创
1328阅读
0评论
0点赞
发布博客于 3 年前

tensorflow中张量、常量、变量、占位符

引言从实例出发#先导入TensorFlowimport tensorflow as tf# Create TensorFlow object called hello_constanthello_constant = tf.constant('Hello World!')with tf.Session() as sess: # Run the tf.constant ...
原创
3227阅读
0评论
2点赞
发布博客于 3 年前

如何用item pipeline(管道)清洗数据

Item Pipeline是处理数据的组件,一个Item Pipeline是一个包含特定接口的类,通常只负责一种功能的数据处理,在一个项目中可以使用多个Item Pipelines,也就是需要定义多个类,它们按照次序联合起来对数据进行处理,形成一条数据处理流水线。 接着上文《如何使用scrapy的item来封装数据》,我现在需要实现额外的三个处理——将价格的单位英镑转换为人民币、去除掉书名相同的...
原创
2292阅读
1评论
0点赞
发布博客于 3 年前

如何使用scrapy的item来封装数据

引言在第一篇如何写第一个scrapy里面,我们是使用字典来对数据进行传递,使用字典有以下缺点。无法直观地了解数据中包含哪些字段缺乏对字段名字的检测不便于携带元数据为了克服上述问题,我们可以使用scrapy中自定义的item类封装爬取到的数据。 spider.py文件import scrapyfrom books.bookitem import BookIte...
原创
2443阅读
1评论
3点赞
发布博客于 3 年前

如何写第一个scrapy

目录结构第一个scrapy的思路代码实现: 核心代码解读小结结构scrapy是一个框架,要想写出第一个scrapy程序,那么就得先了解这个框架是由哪些组件构成的,这些组件又有什么作用。scrapy的组件 看一下这些组件详细的工作流程图 这些组件是如何配合的可以参考一下组件结构,我就不费笔墨了。那么了解了scrapy的大致工作流程之后,如何开始写好第一...
原创
803阅读
0评论
2点赞
发布博客于 3 年前

python的yield和yield from

yield为了理解什么是 yield,你必须理解什么是生成器。在理解生成器之前,让我们先知道什么是迭代。可迭代对象当你建立了一个列表,你可以逐项地读取这个列表,这叫做一个可迭代对象:>>> mylist = [1, 2, 3]>>> for i in mylist :... print(i)123mylist 是一个可迭代的...
原创
429阅读
0评论
0点赞
发布博客于 3 年前

回调函数

何为回调函数:若把函数的指针作为函数参数传递给一个函数,当这个指着被用来调用它所指向的函数时,我们将该指针所指向的函数称为回调函数。回调函数与普通函数最大区别在于函数的调用。对普通函数而言,函数实现者可以直接拿来用,可以直接将它放在main函数内部,也可以放在别的函数内部,从而实现对它的调用。而对于回调函数而言,编程人员编写这个函数的目的仅仅是将它的指针作为参数传递给别的函数,让别的函数调用它,而...
转载
301阅读
0评论
1点赞
发布博客于 3 年前

深刻理解Python中的元类(metaclass)以及元类实现单例模式

深刻理解Python中的元类(metaclass)以及元类实现单例模式在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩;在看python cookbook中关于元类创建单例模式的那一节有些疑惑。因此花了几天时间研究下元类这个概念。通过学习元类,我对python的面向对象有了更加深入的了解。这里将一篇写的非常好的文章基本照搬过来吧,这是一篇在Stack overflow上很热的帖...
转载
285阅读
0评论
0点赞
发布博客于 3 年前

matplotlib各个部分

【Matplotlib】详解图像各个部分首先给一幅Matplotlib的图像组成部分做个介绍。在matplotlib中,整个图像为一个Figure对象。在Figure对象中可以包含一个或者多个Axes对象。每个Axes(ax)对象都是一个拥有自己坐标系统的绘图区域。所属关系如下:下面以一个直线图来详解一个Axes对象内部各个组件内容:其中:title为图像标题,Axis为坐...
原创
450阅读
0评论
0点赞
发布博客于 3 年前

matplotlib显示中文

声明:这是对别人经验的总结问题描述matplotlib绘制图像的时候显示中文时候,中文会变成小方格子。其实骂他plotlib是支持中文编码的,造成这个现象的原因是,matplotlib库的配置信息里面没有中文字体的相关信息。根据这个思路我们能想到的解决办法就是,修改配置文件。但是不推荐这样。解决办法方法一:修改配置文件matplotlibrc在matplotlib的安装路径:P...
转载
537阅读
1评论
1点赞
发布博客于 3 年前

matplotlib画图

一个简单的例子import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-1,1,50)y = 2*x + 1plt.figure()plt.plot(x, y)plt.show()  
原创
116阅读
0评论
0点赞
发布博客于 3 年前

如何理解subplot绘制不规则子图的参数设置

在matplotlib下,一个Figure对象可以包含多个子图(Axes),可以使用subplot()快速绘制,其调用形式如下subplot(numRows, numCols, plotNum)图表的整个绘图区域被分成numRows行和numCols列 然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1 plotNum 参数指定创建的 Axes 对象所在的区...
原创
5596阅读
0评论
4点赞
发布博客于 3 年前

Python类的定义

必须知道的概念类 Class: 用来描述具体相同的属性和方法的对象的集合。定义了该集合中每个对象所共有的属性和方法。对象是类的示例。类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。实例变量:定义在方法中的变量,只作用于当前实例的类。数据成员:类变量或者实例变量用于处理类及其实例对象的相关数据。方法:类中定义的函数。在类内...
原创
5469阅读
0评论
4点赞
发布博客于 3 年前

matplotlib练习

1. 绘制一个二维随机漫步的图形import matplotlib.pyplot as pltimport numpy as npnsteps = 1000draws = np.random.randint(-1,2,size=(2,nsteps))walks = draws.cumsum(1)plt.plot(walks[0,:],walks[1,:]);plt.show()...
转载
151阅读
0评论
0点赞
发布博客于 3 年前

PyQt5基础——3

设置状态栏提示信息 self.statusBar().showMessage('准备就绪') 添加动作 exitAct = QAction(QIcon('exit.png'), '退出(&E)', self) exitAct.setShortcut('Ctrl+Q') exitAct.setStatusTip('退出程序') ...
原创
127阅读
0评论
0点赞
发布博客于 3 年前

PyQt5初级——2

QLineEdit.selectAll() QLineEdit.setFocus() QLineEdit.text() QLineEdit.clear() self.text = QLineEdit('在这里输入数字', self) self.text.selectAll() sel...
原创
396阅读
0评论
0点赞
发布博客于 3 年前

PyQt5初级——

基础模块QtCore模块涵盖了包的核心的非GUI功能,此模块被用于处理程序中涉及到的 time、文件、目录、数据类型、文本流、链接、mime、线程或进程等对象。QtGui模块涵盖多种基本图形功能的类; 包括但不限于:窗口集、事件处理、2D图形、基本的图像和界面 和字体文本。QtWidgets模块包含了一整套UI元素组件,用于建立符合系统风格的classic界面,非常方便,可以在安装时选...
原创
132阅读
0评论
0点赞
发布博客于 3 年前

numpy基础——数组的组合与分割

常用组合函数分类数组的组合有常用的函数,下面分一下类。水平组合:hstack、column_stack垂直组合:vstack、row_stack水平\垂直组合:concatenate深度组合:dstack 什么是水平组合?​ a''' array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])'''b...
原创
1194阅读
0评论
1点赞
发布博客于 3 年前

numpy基础——对数组切片操作

创建首先创建一个多维数组:a = numpy.arange(24).reshape((2,3,4))print(a)结果是:[[[ 0  1  2  3]  [ 4  5  6  7]  [ 8  9 10 11]] [[12 13 14 15]  [16 17 18 19]  [20 21 22 23]]]切片操作切片操作有几个常用符号,分别是‘:’   ...
原创
552阅读
0评论
0点赞
发布博客于 3 年前

python的zip函数

描述zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。语法zip 语法:zip([iterable, ...])返回值元祖列表如:for i in zip(range(5)): print...
原创
81阅读
0评论
0点赞
发布博客于 3 年前

lambda表达式

lambda表达式的结构:lambda args[,args...] : 表达式lambda构造的是一个匿名函数,可以直接在lambda后面附上参数调用,也可以作为函数赋值给另外变量。‘:’冒号前面是函数的参数,冒号后面是函数体的语句,不需要写return语句,表达式的值会被返回。 看一个例子: f = lambda s:' '.join(s.split()) f('thi...
原创
780阅读
0评论
0点赞
发布博客于 3 年前

运行scrapy shell 'http://quotes.toscrape.com'出现错误ValueError: invalid hostname: 'http

解决办法是把单引号改为双引号,即scrapy shell “http://quotes.toscrape.com”
转载
381阅读
0评论
0点赞
发布博客于 3 年前

scrapy带参数的命令

带请求头使用shell:scrapy     shell     -s    USER_AGENT="content"     url输出信息:使用self.log()函数ItemLoader的使用:ItemLoader在每个字段都包含了一个输入处理器和一个输出处理器, 输入处理器收到数据时立刻提取数据 (通过 add_xpath(), add_css() 或者 add_value() 方法) 之...
原创
1227阅读
0评论
0点赞
发布博客于 3 年前

scrapy第一发——基础巩固

目标:爬取http://books.toscrape.com"将该网站上50页,每页20本的书的价格、等级、书名、书的ISBN号等爬取下来并保存在mongoDB数据库里面。该网站如图:首先建立一个爬虫项目,新建一个spider文件,name取值为"book"class BookSpider(scrapy.Spider): name = 'book'整个项目的文件结构如下重写start_re...
原创
202阅读
0评论
0点赞
发布博客于 3 年前

惊了,Ubuntu的autoremove命令竟然这么“好用”

参考自:点击打开链接,点击打开链接在吐槽我使用autoremove命令之前,先讲一下咱们的apt和dpkg1)区别:    a).    两者的区别是dpkg绕过apt包管理数据库对软件包进行操作,所以你用dpkg安装过的软件包用apt可以再安装一遍,系统不知道之前安装过了,将会覆盖之前dpkg的安装。    b).        apt是会解决和安装模块的依赖问题,并会咨询软件仓库,是在线安装。...
转载
12703阅读
3评论
2点赞
发布博客于 3 年前

Ubuntu下使用中文语言

参考自:点击打开链接方式一:(1)点击System Settings(2)选择Language Support,(3)点击install安装语言包,选择简体中文,点击apply,等着安装完(4)然后将汉语拖到顶部(5)点击 Apply-System-Wide(6)在region选项卡里面选择语言中文,然后重启就搞定了方式二:使用命令行操作中文语言包:language-pack-zh-hans 简体...
转载
6581阅读
3评论
1点赞
发布博客于 3 年前

关于<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-sc..

网页源代码中有时候会遇到这样的一段代码:name="viewport"content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />width - viewport的宽度 height - viewport的高度initial-scale - 初始的缩放比例
转载
1898阅读
0评论
1点赞
发布博客于 3 年前

printf与sprintf

php的printf与c语言的printf的作用类似。而printf与sprintf的区别就是不打印,而是返回格式化的字符printf函数的原型为:int printf ( string format [, mixed args [, mixed ...]] )spring函数的原型为:string sprintf ( string format [, mixed args [, mi
转载
324阅读
0评论
1点赞
发布博客于 3 年前

PHP中substr截取中文乱码解决方案

在PHP中经常使用substr来进行字符串的截取,但是当我们用它来实现对中文字符进行截取的时候则会发生乱码问题,比如说:$mystring="今天天气真好";$mysubstring=substr($mystring,0,2);echo $mysubstring;?>输出结果为�;原因分析:substr函数原型为:string substr ( string $string , i
转载
7342阅读
0评论
0点赞
发布博客于 3 年前

php在函数内使用全局变量

在php中,如果在函数内部要使用全局变量的话,要先用global声明该变量,<?php $x=10; $y=20; function test(){ global $x,$y; //如果要在函数内使用全局变量,则必须用global声明。 $y=$x+$y; echo $y; //输出30} test();echo $y;//输出30 ?>如果
原创
8149阅读
0评论
0点赞
发布博客于 3 年前

php中的isset函数和empty函数

1.boolisset ( mixed $var [, mixed $... ] )php中的isset函数是用来判断某个变量是否被set,其返回值为True或False,判断规则如下:若变量不存在,则返回False;若变量存在,其值为NULL,则返回False;若变量存在,且其值不为NULL,则返回True;(另外说明一点:一个0字节('\0')并不等同php的NULL常
转载
259阅读
0评论
0点赞
发布博客于 3 年前

php中0与NULL,False,“0”,"\0"的区别

先说明一下结论:0与NULL,False,“0”,“\0”的值相同,都以0存储,但是类型不同,再看一段实验代码:<?php$test=0;if($test==''){ echo '在php中,0的值等同\'\''; //被输出}if($test===''){ echo '在php中,0的类型与\'\'一致'; //不被输出}else echo'在php中,0的类型与\'
转载
1933阅读
0评论
0点赞
发布博客于 3 年前

使input文本框不可编辑的3种方法

转自点击打开链接今天试了一下使input文本框不可编辑的3种方法,现在总结一下:disabled 属性规定应该禁用 input 元素,被禁用的 input 元素,不可编辑,不可复制,不可选择,不能接收焦点,后台也不会接收到传值。设置后文字的颜色会变成灰色。disabled 属性无法与 一起使用。示例:readonly 属性规定输入字段为只读可复制,
转载
3394阅读
0评论
0点赞
发布博客于 3 年前

实战网页布局心得(一)

实战心得:1.父元素不能撑起浮动子元素带来的影响在没有实战之前,经常会看到书里讲到浮动元素带来的影响,其中之一就是父元素不能撑起子元素,书里经常会举这个例子然后书上就会介绍如何清除浮动来让父元素撑起子元素了,但是当不设置父元素的高度时,页面就只会显示这两个子元素,看起来好像达到了我们想要的效果,那为什么还要清除浮动呢??父元素没有包裹子元素其实还是会有影响的,会对父元素的兄弟元
原创
1134阅读
0评论
3点赞
发布博客于 4 年前

js碎片知识的学习与补充(parseint与ChildNodes属性)

在W3上查询结果如下:1.parseint——解析一个字符串并返回一个整数语法:parseint(string,radix)参数:string被解析的字符串,radix要解析的数字的基数,取值为2~36,如果该参数小于 2 或者大于 36,则 parseInt() 将返回 NaN。说明:当参数 radix 的值为 0,或没有设置该参数时,parseInt() 会根据 string
转载
141阅读
1评论
0点赞
发布博客于 4 年前

元素class属性中的空格

今天练习js的一个样例时碰到了class属性中含有空格,不是太懂,于是就百度了一下,百度结果如下:这个div就被同时赋予了box1、box2、textbox这三个class类名,中间使用空格隔开。元素的class类名个数是没有限制的,如有需要可以设置N个,但是为了能够让浏览器识别,所以每个class之间要使用空格隔开。但有个问题就是当多类并存并且同时声明了同一个样式的时候,就涉
转载
1970阅读
0评论
1点赞
发布博客于 4 年前

跟着书本学习CSS(2)

CSS的继承性与层叠性css的继承:CSS能够从父元素那里继承某些样式属性,比如color,font-size等等,但是像margin,padding,border不能继承。CSS的继承分为主要三类:(1)文本相关属性;font-family、font-size,font-style、font-weight、font、line-height、text-align、text-inde
原创
186阅读
0评论
1点赞
发布博客于 4 年前

跟着书本重学CSS(1)

css的单位:css里面有绝对单位和相对单位,绝对单位是固定长度的,不受任何东环境影响的;而相对单位则是相对于其他长度而言的。这里详细了解一下相对单位:px,%,em和rempx:像素。屏幕分辨率的不同,1px 的大小也是不同的,如果不考虑屏幕分辨率,我们也可以认为px是绝对单位。%:百分比。支持百分比作为单位的属性很多,大致分为三类:(1)width、height、font-
原创
212阅读
0评论
1点赞
发布博客于 4 年前

学习Pygame和巩固Python——画颜色~

这次学习的地址是http://eyehere.net/2011/python-pygame-novice-professional-5/#comment-354英语水平急剧降低,我还是把学习中碰到的英语单词记下来吧,,,1.set the color value for a single pixel:为单个像素设置颜色值2.Set the RGBA or mappe
原创
2042阅读
0评论
1点赞
发布博客于 4 年前

pygame学习和python巩固——字体显示

本次学习的地址是:http://eyehere.net/2011/python-pygame-novice-professional-4/本节主要是将如何显示文字。方法一:用系统自带的字体先创建一个font字体,my_font = pygame.font.SysFont("arias",60)第一个参数是字体名称,第二个参数是字的大小可以通过pygame.font.
原创
2203阅读
2评论
0点赞
发布博客于 4 年前

pygame的学习以及python的巩固(窗口尺寸的显示)

这次学习的地址是:http://eyehere.net/2011/python-pygame-novice-professional-3/这一篇主要讲了全屏显示的切换和改变窗口尺寸等知识,关于复合模式我有选择性地忽略了它,因为我暂时用不上。1.全屏显示:就是在set_mode函数里面将第二个参数传入FULLSCREEN,主要代码:while True: for
原创
3324阅读
1评论
1点赞
发布博客于 4 年前

字典、列表、元祖、字符串的综合(2)

1.利用负数作为索引项python里面的字典可以用负数作为其索引项,且-1表示最后一个元素例如:index = [1,2,3]print(index[-2])#输出结果为:22.列表的几个操作①‘+’操作符——用于连接两个列表,生成一个新的列表例如:x = [1,2,3]y = [4,5,6]z = x + yprint(z)#输出结果为:[1,2,3,4
原创
173阅读
0评论
1点赞
发布博客于 4 年前

字典、列表、元祖、字符串的综合(1)

1.字典拥有keys方法,例如:h = {'t':1,'a':2,'o':3,'r':4}print(type(h.keys()))#输出结果为:#如果要使用列表方法要先用list()将其转换为列表类型2.字典的setdefault和get方法的应用——统计一个字符串中各字母出现的次数def counts(index): dict_crea = {} for
原创
199阅读
0评论
0点赞
发布博客于 4 年前

python的读取纯文本文件的几种模式

python读取纯文本文件利用open函数:fout = open(path,[arg])path表示你要读取的文件的路径,可以是绝对路径,也可以是相对路径。arg表示你读取这个文件采取的模式,默认不写是'r‘’只读。python里面一共有以下几种模式:r           ——文件以只读的方式打开r+         ——文件可以读,也可以写w         —
原创
1596阅读
0评论
0点赞
发布博客于 4 年前

python中缩进规则的例外

大多数情况下,代码行的缩进告诉python它属于哪一个代码块,但是这个规则有几个例外。1.列表可以跨越多行python知道,当没有看到结束方括号时,列表就没有结束,例如:spam = ['apples', 'bananas' 'yellow']2.在行末使用续字符\,将一条指令写成多行。\续行字符之后的一行中, 缩进并不重要。例如:print ('sfsh'
原创
2996阅读
0评论
0点赞
发布博客于 4 年前

python基础知识四——局部作用域和//运算符

局部作用域与C++/C不同的是,python 的局部作用域只能是函数内部,而C/C++还包括子语句块。下面来说明一下哪些情况下是局部变量局部变量1.如果该变量在全局作用域(即在所有函数外)中使用,它就是全局变量。2.如果在一个函数中,有针对该变量的global语句,则它就是全局变量。3.否则,如果该变量用于函数中的赋值语句,则它就是局部变量。4.但是如果该变量没有用在赋
原创
291阅读
0评论
1点赞
发布博客于 4 年前

python基础知识三——try与except处理异常语句

try/except介绍与其他语言相同,在python中,try/except语句主要是用于处理程序正常执行过程中出现的一些异常情况,如语法错(python作为脚本语言没有编译的环节,在执行过程中对语法进行检测,出错后发出异常消息)、数据除零错误、从未定义的变量上取值等;而try/finally语句则主要用于在无论是否发生异常情况,都需要执行一些清理工作的场合,如在通信过程中,无论通信是否
转载
121262阅读
8评论
39点赞
发布博客于 4 年前

asp简单样例(1)

1.循环生成多个标题<%dim i for i=1 to 6 response.write("Heading " & i & "")next%>2.使用vbscript调用javascript和vbscrip写的函数ASP中,可以使用多种脚本语言,但是javascript和vbscript是原生支持的,使用其他的脚本需要下载相应的引擎
转载
926阅读
0评论
0点赞
发布博客于 4 年前

获取表单内部元素的N种方法

今天讲讲获取表单元素的N种方法~以上是部分资料参考的地方:http://blog.csdn.net/h12kjgj/article/details/61624509先给出一个实例。输入数字1~10,弹出输入的数字,并计算该数字的阶乘;如果输入的数字不在该范围内,则输出“balabala自己编的一些话”源代码: function Count(){var i,r,
转载
2079阅读
0评论
1点赞
发布博客于 4 年前

JSDOM模型的样例

参考自:http://www.w3school.com.cn/js/js_htmldom_html.asp1.查找HTML元素(1)利用getElementById()方法实现点击元素改变文字内容: 利用id方法查找 这是要改变的文字 function change(){ var pass = document.get
原创
512阅读
0评论
2点赞
发布博客于 4 年前

jsDOM用法讲解

1.HTML DOM(文档对象模型)当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model)HTML DOM模型被构造为对象的树HTML DOM树通过这个对象模型,javascript获得了足够的能力来创建动态的HTMLJavaScript能够改变页面中的所有HTML元素JavaScript能够改变页面中的所有HTML
转载
2751阅读
0评论
2点赞
发布博客于 4 年前

CSSbackground的详细使用

本文参考自:http://www.divcss5.com/rumen/r125.shtml#no1和http://www.w3school.com.cn/cssref/pr_background.asp在原文的基础上自己整理出来的,易于理解的版本。background可以设置背景的一系列属性,详细地分开来看的话,共有一下几种。background-color  |  backgroun
转载
616阅读
0评论
2点赞
发布博客于 4 年前

javascript中match方法和exec()方法详解与深度区别(非原创)

match和exec的比较1.matchmatch方法属于String正则表达方法. 语法: str.match(regexp或者string)str:要进行匹配的字符串. regexp:一个正则表达式(或者由RegExp()构造成的正则表达式)match的用法主要区分就是,正则表达式是否有全局标示g.(1)如果有g全局标志,那么返回的数组保存的是,所有匹配的内容,不包括子
转载
808阅读
0评论
2点赞
发布博客于 4 年前