28、量子点中的自旋电子学、量子计算与量子通信

量子点中的自旋电子学、量子计算与量子通信

1. 量子系统的可分性与蒸馏性

在量子信息领域,可分性和蒸馏性是重要的研究问题。对于具有非正部分转置的量子态 $\rho$,可以将其去极化到仍具有非正部分转置的 Werner 态。即存在如下关系:
[0 > \langle\Phi^+|\tilde{\rho}^T|\Phi^+\rangle=\int d\mu(U)\langle\Phi^+|(U \otimes U^ ) \rho^T (U \otimes U^ )^{\dagger}|\Phi^+\rangle=\langle\Phi^+|\rho_F|\Phi^+\rangle]
其中 $\rho_F$ 是 Werner 形式(49),这里使用了(48)。这表明,为了研究所有具有非正部分转置的态是否可蒸馏,我们可以将研究范围限制在 Werner 态上。

对于有限维度且其中一个系统为量子比特的情况,以及无限维度的高斯态情况,一个态可蒸馏当且仅当它具有非正部分转置。然而,对于更高(但有限)维度的系统,尽管尚未有严格证明,但有充分证据表明存在具有非正部分转置却不可蒸馏的 Werner 态。目前(2001 年 4 月)关于两个量子系统的可分性和蒸馏性的情况总结如下表:
|系统情况|可蒸馏条件|
| ---- | ---- |
|有限维度,一个系统为量子比特|具有非正部分转置|
|无限维度,高斯态|具有非正部分转置|
|更高有限维度系统|存在具有非正部分转置却不可蒸馏的情况|

多体蒸馏问题比两体问题更为复杂,同样可以使用去极化方法来证明一个态是否可蒸馏。

2. 量子点在量子
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值