量子点中的自旋电子学、量子计算与量子通信
1. 量子系统的可分性与蒸馏性
在量子信息领域,可分性和蒸馏性是重要的研究问题。对于具有非正部分转置的量子态 $\rho$,可以将其去极化到仍具有非正部分转置的 Werner 态。即存在如下关系:
[0 > \langle\Phi^+|\tilde{\rho}^T|\Phi^+\rangle=\int d\mu(U)\langle\Phi^+|(U \otimes U^ ) \rho^T (U \otimes U^ )^{\dagger}|\Phi^+\rangle=\langle\Phi^+|\rho_F|\Phi^+\rangle]
其中 $\rho_F$ 是 Werner 形式(49),这里使用了(48)。这表明,为了研究所有具有非正部分转置的态是否可蒸馏,我们可以将研究范围限制在 Werner 态上。
对于有限维度且其中一个系统为量子比特的情况,以及无限维度的高斯态情况,一个态可蒸馏当且仅当它具有非正部分转置。然而,对于更高(但有限)维度的系统,尽管尚未有严格证明,但有充分证据表明存在具有非正部分转置却不可蒸馏的 Werner 态。目前(2001 年 4 月)关于两个量子系统的可分性和蒸馏性的情况总结如下表:
|系统情况|可蒸馏条件|
| ---- | ---- |
|有限维度,一个系统为量子比特|具有非正部分转置|
|无限维度,高斯态|具有非正部分转置|
|更高有限维度系统|存在具有非正部分转置却不可蒸馏的情况|
多体蒸馏问题比两体问题更为复杂,同样可以使用去极化方法来证明一个态是否可蒸馏。
超级会员免费看
订阅专栏 解锁全文
2

被折叠的 条评论
为什么被折叠?



