poj 3613

 题意:求s到e经过k条边的最短路径。

思路:floyd。注意对角线不可以赋初值为0,这里代表的是一条边的边长。

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 205;
const int maxm = 105;
int n;
struct matrix{
    int a[maxn][maxn];
    matrix operator*( const matrix& b ){
        matrix res;
        memset( res.a,0x7f,sizeof(res.a) );
        for( int i = 1; i <= n;i++ ){
            for( int j = 1;j <= n;j++ ){
                for( int k = 1;k <= n;k++ ){
                    res.a[i][j] = min( (LL)res.a[i][j],(LL)a[i][k]+b.a[k][j] );
                }
            }
        }
        return res;
    }
};
template <typename T>
T mpow( T a,int b ){
    T res =a;b--;
    while(b){
        if(b&1) res = res*a;
        b >>=1;
        a = a*a;
    }
    return res;
}
int a[maxn][maxn];
int u[maxm],v[maxm],c[maxm];
vector<int> ve;
void discrete(){
    sort(ve.begin(),ve.end());
    ve.erase( unique(ve.begin(),ve.end()),ve.end() );
}
int h( int x ){
    return lower_bound( ve.begin(),ve.end(),x ) - ve.begin() + 1;
}
int main(){
    int b,t,s,e;
    while(4 == scanf("%d%d%d%d",&b,&t,&s,&e)) {
        int x, y, z;
        memset(a, 0x7f, sizeof(a));
        for (int i = 1; i <= t; i++) {
            scanf("%d%d%d", &z, &x, &y);
            ve.push_back(x);
            ve.push_back(y);
            u[i] = x;
            v[i] = y;
            c[i] = z;
        }
        discrete();
        for (int i = 1; i <= t; i++) {
            int x = h(u[i]), y = h(v[i]), z = c[i];
            a[x][y] = a[y][x] = z;
        }
        n = ve.size();
        matrix base;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                base.a[i][j] = a[i][j];
            }
        }
        matrix ans = mpow(base, b);
        int xx = h(s), yy = h(e);
        printf("%d\n", ans.a[xx][yy]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值