自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 transformer实战-序列标注的代码解读

第九章:序列标注任务 · Transformers快速入门本文扩展的内容:1.功能概括更精简、具体,2.代码逐句详细解读,3.包含原文中涉及到的专业名词简介序列标注任务即为词语打标签,分为两类,本文针对命名实体识别命名实体识别 NER :识别出文本中诸如人物、地点、组织等实体,即为所有的待识别词语打标签。

2024-11-04 13:40:50 599

原创 transformer实战-抽取式问答任务-代码解读

我们的目的是使用 Transformers 库来完成pipeline自动封装的过程(文本编码,将输入送入模型,对模型输出进行处理)下面我们用transformer来完成基于context中回答question的功能,并且返回截取片段的起始终止位置和概率。首先了解分词器tokenizer以及相关概念和调用方法。

2024-10-30 14:27:41 123

原创 # 基于Transformers的BERT模型实战之微调句子对分类模型-代码逐句解读

【代码】# 基于Transformers的BERT模型实战之微调句子对分类模型-代码逐句解读。

2024-10-23 18:10:18 199

原创 图片分类,代码逐句解读

FashionMNIST 数据集是一个常用的计算机视觉数据集,常用于训练和测试图像分类模型。它包含 10 类不同类型的服装图像,每类有 6000 张训练图像和 1000 张测试图像。我们构建了一个含有ReLU激活函数的两个全连接隐藏层和一个分类层的神经网络,在训练集上训练迭代得到最佳参数,然后测试集上检查正确率。

2024-10-18 15:00:28 531

原创 transformer代码逐句解读

transformer代码解读

2024-10-10 18:25:00 409

原创 逐句解析如何使用nnlm模型实现单词预测

实现了一个简单的神经网络语言模型(NNLM),用于预测给定前n-1个单词的下一个单词。通过训练,模型能够学习到单词之间的上下文关系,从而进行预测。

2024-09-05 14:46:24 139

原创 docker容器占用资源的管理

如果不指定或将其设置为0,都将使用默认值。为了避免内存不足,唤起的内存管理器OOM killer杀掉docker进程时,我们可以给它的--oom-score-adj 配置一个比较低的数值(但应高于docker进程的该值,默认-500)注意,指定--memory大小时,会自动将--memory-swap设置成--memory的两倍,更改--memory大小时候,需要注意--memory-swap的限制。新建:docker run -it --rm --cpuset-cpus="1" 镜像名称:版本。

2023-11-13 18:36:23 262

原创 base64原理

转换依据:3个字节=8(字节占位)×3=24位=6(字符串占位)×4。再根据01编码找到对应的字符串,即完成了转换。26个,0-9 10个,+,/,偶尔还有=base64图片:64个字符串,其中。(互转依据:0-1表示,其中。

2023-04-24 18:43:38 98 2

原创 python 成绩排名,排位次(不使用第三方库)

成绩排名,排名次,rank

2023-02-23 18:21:34 2601 1

原创 docker打包本地python项目为镜像时,排错记录

docker 排错

2023-02-13 15:23:04 909 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除