Sklearn 与 TensorFlow 机器学习实用指南-第四章 训练模型-笔记
本章讨论对于机器学习模型的理解、构建。首先,以一个简单的线性回归模型为例,讨论两种不同的训练方法来得到模型的最优解:方式一:使用公式,计算得到使损失函数达到最小值的模型参数方式二:使用迭代优化方法:梯度下降(GD),也会介绍一些梯度下降的变体形式:批量梯度下降(Batch GD)、小批量梯度下降(Mini-batch GD)、随机梯度下降(Stochastic GD)接下来研究一个更复杂的模型-多项式回归,探讨什么是过拟合以及正则化。













