k近邻法
k近邻法的思想:
k近邻法是一种基本分类与回归方法。输入为实例的特征向量,输出为实例的类别(可取多类)。具体过程是:给定一个已经分好类的数据集,对于新的实例,加入此数据集,以离这个点最近(距离度量)的k个点(k值选取)的类别进行多数表决(分类策略)去决定这个新的实例的类别。
k近邻法三要素:
k值的选择:
k小,用于训练的点少,只有新实例点旁边的点起作用(表决),近似误差小,估计误差大;k大,用于训练的点的数量多,模型较简单,近似误差大,估计误差小。
距离的度量:
特征空间中两个实例之间的距离是两个实例之间相似程度的度量。距离的度量方式有L1距离(曼哈顿距离)L2距离(欧式距离),更一般的Lp距离或明氏距离。
分类的策略:
多数表决。等价于经验风险最小化。
kd树
kd树是什么:
k近邻法需要判断实例点之间的距离,大规模数据时,不停的计算距离显然是一件十分耗时的事情。为了减少计算的次数以提高效率,考虑用特殊的结构去存储训练数据,这里用kd树来存储。kd树首先是一种二叉树。因为数据可以是高维的,所以对应的kd树的每个节点都是一个k维数值点的二叉树。这也是与以前学的二叉树的一个不同。kd树主要应用在高维数据索引上,做空间划分和近邻搜索。以上是kd树的作用,明白了它是用来划分高维空间、存储高维数据的之后,接下来要知道kd树如何构造,怎么就划分了高维空间了,以及怎么样搜索就减少了计算的次数了。
kd树的构造
一维数据构造的二叉树及其查找过程:

比如这是一个班里语文的成绩,现在想找出来成绩在区间[40,80]之间的,很好找,设此集合为S1。

k近邻法是一种基于实例的学习方法,通过寻找新实例最近的k个邻居进行分类。kd树是一种用于高维数据索引的数据结构,通过分割超平面减少搜索距离计算次数。文章介绍了kd树的构造过程,包括选择切分维度和中值的方法,以及如何通过kd树进行高效的空间搜索。
最低0.47元/天 解锁文章
4217

被折叠的 条评论
为什么被折叠?



